System Management BIOS Reference Specification

Version 2.3

System Management BIOS Reference Specification
previously known as

Desktop Management BIOS Specification

Version 2.3 — 12 August 1998
Co-authored by American Megatrends Inc., Award Software International Inc., Compaq Computer Corporation, Dell Computer Corporation, Hewlett-Packard Company, Intel Corporation, International Business Machines Corporation, Phoenix Technologies Limited, and SystemSoft Corporation.

This document is provided AS IS for informational purposes only. AMERICAN MEGATRENDS INC., AWARD SOFTWARE INTERNATIONAL INC., COMPAQ COMPUTER CORPORATION, DELL COMPUTER CORPORATION, HEWLETT-PACKARD COMPANY, INTEL CORPORATION, INTERNATIONAL BUSINESS MACHINES CORPORATION, PHOENIX TECHNOLOGIES LIMITED, AND SYSTEMSOFT CORPORATION MAKE NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

American Megatrends Inc., Award Software International Inc., Compaq Computer Corporation, Dell Computer Corporation, Hewlett-Packard Company, Intel Corporation, International Business Machines Corporation, Phoenix Technologies Limited, or SystemSoft Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you any license to such patents, trademarks, copyrights, or other intellectual property rights.

American Megatrends Inc., Award Software International Inc., Compaq Computer Corporation, Dell Computer Corporation, Hewlett-Packard Company, Intel Corporation, International Business Machines Corporation, Phoenix Technologies Limited, and SystemSoft Corporation do not make any representation or warranty regarding specifications in this document or any product or item developed based on these specifications. American Megatrends Inc., Award Software International Inc., Compaq Computer Corporation, Dell Computer Corporation, Hewlett-Packard Company, Intel Corporation, International Business Machines Corporation, Phoenix Technologies Limited, and SystemSoft Corporation disclaim all express and implied warranties, including but not limited to the implied warranties or merchantability, fitness for a particular purpose and freedom from infringement. Without limiting the generality of the foregoing, American Megatrends Inc., Award Software International Inc., Compaq Computer Corporation, Dell Computer Corporation, Hewlett-Packard Company, Intel Corporation, International Business Machines Corporation, Phoenix Technologies Limited, and SystemSoft Corporation do not make any warranty of any kind that any item developed based on these specifications, or any portion of a specification, will not infringe any copyright, patent, trade secret or other intellectual property right of any person or entity in any country. It is your responsibility to seek licenses for such intellectual property rights where appropriate. American Megatrends Inc., Award Software International Inc., Compaq Computer Corporation, Dell Computer Corporation, Hewlett-Packard Company, Intel Corporation, International Business Machines Corporation, Phoenix Technologies Limited, or SystemSoft Corporation shall not be liable for any damages arising out of or in connection with the use of these specifications, including liability for lost profit, business interruption, or any other damages whatsoever. Some states do not allow the exclusion or limitation of liability or consequential or incidental damages; the above limitation may not apply to you.

ActiveMovie, ActiveX, BackOffice, Direct3D, DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectSound, DirectX, Microsoft, NetMeeting, Win32, Windows, and Windows NT are trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. Intel, Pentium, and MMX are trademarks or registered trademarks of Intel Corporation. *Other product and company names mentioned herein might be the trademarks of their respective owners.

© 1997, 1998 American Megatrends Inc., Award Software International, Compaq Computer Corporation, Dell Computer Corporation, Hewlett-Packard Company, Intel Corporation, International Business Machines Corporation, Phoenix Technologies Limited, and SystemSoft Corporation. All rights reserved.

Document Information

The softcopy version of this specification is available from the following World Wide Web locations:

· http://www.phoenix.com/techs

· ftp://download.intel.com/ial/wfm/smbios.pdf
· http://www.ibm.com/products/surepath

Document Revision History

Version
Release Date
Description

2.0D
09/14/1995
Initial Release of DRAFT COPY

2.0M
12/12/1995
Final draft released, with the following changes:

· Specified that dmiStorageBase (Function 50h) and NVStorageBase (Function 55h) must be paragraph-aligned.

· Added Command value to change a string to function 52h; Command enumeration values modified.

· Removed redundant enumerations from Processor Family list

· Corrected Memory Subsystem Example

· Corrected/clarified Indexed I/O access-methods for event-log; Access Method enumeration values and Access Method Address union modified

· Added clarifications to some of the event log types

2.00
03/06/1996
Final release, with the following changes:

· Specified that all structures end with a terminating NULL, even if the formatted portion of the structure contains string-reference fields and all the string fields are set to 0.

· Corrected the Memory Subsystem Example, handles are now correctly created with a ‘dw’.

· Fixed formatting of some bit definition fields and function examples.

2.00.1
07/18/1996
Minor updates for new technology and clarifications.

· Added definitions for Pentium® Pro, Burst EDO, and SDRAM.

· Added clarifications to the Memory Controller Error Status.

2.1
06/16/1997
Added definition for static table interface, to allow the information to be accessed from new operating systems, see 2.1 Table Convention on page 11. In addition:

· Changed references to DMI BIOS to SMBIOS throughout; these changes are unmarked.

· Added SubFunction DMI_CLEAR_EVENT_LOG2 to Function 54h - SMBIOS Control.

· For those structure entries which are string numbers, changed the Value field definition of the field from Varies to STRING throughout; these changes are unmarked.

· BIOS Information structure: Added support for 4-digit year and additional BIOS Characteristics via Characteristics Extension Byte 1.

· System Information structure: Added Wakeup Type and UUID fields.

· System Enclosure and Chassis structure: Added Bootup State, Power Supply State, Thermal State, and Security Status to allow the DMTF|Physical Container Global Table to be populated.

· Processor Information structure: Voltage value can now be specified, rather than using bit-flags, and added enumeration values for Pentium® Pro, Pentium® II, and Slot 1. Also added notes to this section, indicating that the enumerated values for the structure are assigned by the DMTF. This structure was also updated to include the Cache Information handles identifying the L1, L2, and L3 caches associated with the processor.

· Memory Controller Information structure: Added Enabled Error Correcting field. Also added note that this structure can never be updated to add string values, to preserve backwards compatibility.

· Cache Information structure: Added Speed, Error Correction Type, Type, and Associativity fields.

· Port Connector Information structure: Added enumerated values to Connector Types and Port Types.

· System Slots structure: Added AGP enumeration values to Slot Type field.

· BIOS Language Information structure: Added abbreviated-format for language strings and corrected example.

· System Event Log structure: OEM-specific Access Methods can now be defined, added standard log header definitions, and a mechanism to allow the log entry’s variable data formats to be described. Added note that this structure can never be updated to include string values, to preserve backwards compatibility.

· Added Physical Memory Array, Memory Device, Memory Error Information, Memory Array Mapped Address, and Memory Device Mapped Address structures to support the population of the DMTF Enhanced Physical Memory groups.

· Added Built-in Pointing Device structure to support the population of the DMTF Pointing Device group.

· Added Portable Battery structure to support the population of the DMTF Portable Battery group.

· Added appendices that contain a structure checklist and table-convention parsing pseudo-code.

2.2

03/16/1998
The following changes were made to v2.1 of the document to produce this version:

· Accepted all changes introduced at Version 2.1

· Added ACPI statement-of-direction for dynamic state and event notification

· Table-convention is required for v2.2 and later compliance
· Corrected Structure Table entry point length value.

· Added Command type 06h to the Plug-and-Play Set SMBIOS Structure function (52h).

· Added new processor enumerations from the updated DMTF MASTER.MIF

· System Enclosure: Added enumeration value for “Sealed-case PC”, to support Net PC-type chassis’.

· Memory Controller Information: Corrected description of how the BIOS computes the structure Length.

· System Event Log:

· Added definition for end-of-log data, Event Log Type 0FFh.

· Added generic system-management event type; the handle of an associated probe or cooling device identifies the specific failing device.

· Memory Error Information: Corrected structure size and offsets.

· Portable Battery: Corrected the structure length and some of the offsets, added Smart Battery-formatted fields

· Memory Device: Added RIMM form factor

· Added the following new structures

· System Reset structure to support the population of the DMTF Automatic System Reset group.

· Hardware Security structure to support the population of the DMTF System Hardware Security group.

· System Power Control structure to support the population of the DMTF System Power Control group.

· Added Voltage Probe structure to support the population of the DMTF Voltage Probe group.

· Cooling Device structure to support the population of the DMTF Cooling Device group.

· Temperature Probe structure to support the population of the DMTF Temperature Probe group.

· Electrical Current Probe structure to support the population of the DMTF Electrical Current Probe group.

· Out-of-Band Remote Access structure to support the population of the DMTF Out-of-Band Remote Access group.

· Inactive structure type to support standard structure superset definitions.

· End-of-Table structure type to facilitate easier traversing of the structure data.

2.3

08/12/1998
The following changes were made to v2.2 of the document to produce this version:

· Accepted all changes introduced at Version 2.2
· Clarified and corrected referenced documents
· A minimum set of structures (and their data) is now required for SMBIOS compliance.
· Documented an additional structure usage guideline, to optional structure growth.
· BIOS Information:
· 4-digit year format for BIOS Release Date required for SMBIOS 2.3 and later
· Added BIOS Characteristic Extension Byte 2 to include status that the BIOS supports the BIOS Boot Specification.
· System Information: Added enumeration for Wake-up Type
· System Enclosure or Chassis: Added OEM-defined field.
· Processor Information:
· Added enumerated values for new processors from the updated MASTER.MIF and identified that one structure is present for each processor instance.
· Modified interpretation of Lx Cache Handle fields for v2.3 and later implementations
· Memory Module Information: Corrected example, adding double-null to terminate the structure.
· System Slots: Added hot-plug characteristic definition and clarified usage of the PCI “Slot ID” field.
· Memory Device:
· Added enumerations for Form Factor and Device Type

· Added new field for memory Speed
· System Event Log: Added note describing how century portion of the 2-digit year within a log record is to be interpreted.
· Voltage Probe, Temperature Probe, Electrical Current Probe, Cooling Device:

· Added Nominal Value field
· Added the following new structures

· Boot Integrity Services (BIS) Entry Point

· System Boot Information
· 64-bit Memory Error Information

· Management Device

· Management Device Component

· Management Device Threshold Data

Table Of Contents

10

1. Overview

1.1 Statement of Direction — Dynamic Information and Events
10

1.2 References
10

1.3 Conventions Used in this Document
11

2. Accessing SMBIOS Information
11

2.1 Table Convention
11

2.1.1 SMBIOS Structure Table Entry Point
11

2.2 Plug-and-Play Calling Convention
13

2.2.1 SMBIOS Functions
13

2.2.2 Error Return Codes
13

2.2.3 SMBIOS Structure Access Interface
13

2.2.3.1 Function 50h – Get SMBIOS Information
13

2.2.3.2 Function 51h – Get SMBIOS Structure
13

2.2.3.3 Function 52h – Set SMBIOS Structure
13

2.2.4 Structure Change Notification Interface
13

2.2.4.1 Function 53h – Get Structure Change Information
13

2.2.5 Control Interface
13

2.2.5.1 Function 54h – SMBIOS Control
13

2.2.6 General Purpose Nonvolatile Storage Interface
13

2.2.6.1 Function 55H – Get General-Purpose NonVolatile Information
13

2.2.6.2 Function 56H – Read General-Purpose NonVolatile Data
13

2.2.6.3 Function 57H – Write General-Purpose NonVolatile Data
13

3. SMBIOS Structures
13

3.1 Structure Standards
13

3.1.1 Structure Evolution and Usage Guidelines
13

3.1.2 Structure Header Format
13

3.1.3 Text Strings
13

3.2 Required Structures and Data
13

3.3 Structure Definitions
13

3.3.1 BIOS Information (Type 0)
13

3.3.1.1 BIOS Characteristics
13

3.3.1.2 BIOS Characteristics Extension Bytes
13

3.3.2 System Information (Type 1)
13

3.3.2.1 System — Wake-up Type
13

3.3.3 Base Board Information (Type 2)
13

3.3.4 System Enclosure or Chassis (Type 3)
13

3.3.4.1 System Enclosure or Chassis Types
13

3.3.4.2 System Enclosure or Chassis States
13

3.3.4.3 System Enclosure or Chassis Security Status
13

3.3.5 Processor Information (Type 4)
13

3.3.5.1 Processor Information - Processor Type
13

3.3.5.2 Processor Information - Processor Family
13

3.3.5.3 Processor ID Field Format
13

3.3.5.4 Processor Information – Voltage
13

3.3.5.5 Processor Information - Processor Upgrade
13

3.3.6 Memory Controller Information (Type 5)
13

3.3.6.1 Memory Controller Error Detecting Method
13

3.3.6.2 Memory Controller Error Correcting Capability
13

3.3.6.3 Memory Controller Information - Interleave Support
13

3.3.6.4 Memory Controller Information - Memory Speeds
13

3.3.7 Memory Module Information (Type 6)
13

3.3.7.1 Memory Module Information - Memory Types
13

3.3.7.2 Memory Module Information - Memory Size
13

3.3.7.3 Memory Subsystem Example
13

3.3.8 Cache Information (Type 7)
13

3.3.8.1 Cache Information - SRAM Type
13

3.3.8.2 Cache Information — Error Correction Type
13

3.3.8.3 Cache Information — System Cache Type
13

3.3.8.4 Cache Information — Associativity
13

3.3.9 Port Connector Information (Type 8)
13

3.3.9.1 Port Information Example
13

3.3.9.2 Port Information - Connector Types
13

3.3.9.3 Port Types
13

3.3.10 System Slots (Type 9)
13

3.3.10.1 System Slots - Slot Type
13

3.3.10.2 System Slots - Slot Data Bus Width
13

3.3.10.3 System Slots - Current Usage
13

3.3.10.4 System Slots - Slot Length
13

3.3.10.5 System Slots — Slot ID
13

3.3.10.6 Slot Characteristics 1
13

3.3.10.7 Slot Characteristics 2
13

3.3.11 On Board Devices Information (Type 10)
13

3.3.11.1 Onboard Device Types
13

3.3.12 OEM Strings (Type 11)
13

3.3.13 System Configuration Options (Type 12)
13

3.3.14 BIOS Language Information (Type 13)
13

3.3.15 Group Associations (Type 14)
13

3.3.16 System Event Log (Type 15)
13

3.3.16.1 Supported Event Log Type Descriptors
13

3.3.16.2 Indexed I/O Access Method
13

3.3.16.3 Access Method Address — DWORD Layout
13

3.3.16.4 Event Log Organization
13

3.3.16.5 Log Header Format
13

3.3.16.6 Log Record Format
13

3.3.17 Physical Memory Array (Type 16)
13

3.3.17.1 Memory Array — Location
13

3.3.17.2 Memory Array — Use
13

3.3.17.3 Memory Array — Error Correction Types
13

3.3.18 Memory Device (Type 17)
13

3.3.18.1 Memory Device — Form Factor
13

3.3.18.2 Memory Device — Type
13

3.3.18.3 Memory Device — Type Detail
13

3.3.19 32-bit Memory Error Information (Type 18)
13

3.3.19.1 Memory Error — Error Type
13

3.3.19.2 Memory Error — Error Granularity
13

3.3.19.3 Memory Error — Error Operation
13

3.3.20 Memory Array Mapped Address (Type 19)
13

3.3.21 Memory Device Mapped Address (Type 20)
13

3.3.22 Built-in Pointing Device (Type 21)
13

3.3.22.1 Pointing Device — Type
13

3.3.22.2 Pointing Device — Interface
13

3.3.23 Portable Battery (Type 22)
13

3.3.23.1 Portable Battery — Device Chemistry
13

3.3.24 System Reset (Type 23)
13

3.3.25 Hardware Security (Type 24)
13

3.3.26 System Power Controls (Type 25)
13

3.3.26.1 System Power Controls — Calculating the Next Scheduled Power-on Time
13

3.3.27 Voltage Probe (Type 26)
13

3.3.27.1 Voltage Probe — Location and Status
13

3.3.28 Cooling Device (Type 27)
13

3.3.28.1 Cooling Device —Device Type and Status
13

3.3.29 Temperature Probe (Type 28)
13

3.3.29.1 Temperature Probe — Location and Status
13

3.3.30 Electrical Current Probe (Type 29)
13

3.3.30.1 Current Probe — Location and Status
13

3.3.31 Out-of-Band Remote Access (Type 30)
13

3.3.32 Boot Integrity Services (BIS) Entry Point (Type 31)
13

3.3.33 System Boot Information (Type 32)
13

3.3.33.1 System Boot Status
13

3.3.34 64-bit Memory Error Information (Type 33)
13

3.3.35 Management Device (Type 34)
13

3.3.35.1 Management Device — Type
13

3.3.35.2 Management Device — Address Type
13

3.3.36 Management Device Component (Type 35)
13

3.3.37 Management Device Threshold Data (Type 36)
13

3.3.38 Inactive (Type 126)
13

3.3.39 End-of-Table (Type 127)
13

4. Structure Checklist
13

4.1 Correlation to DMTF Groups
13

4.2 Conformance Guidelines
13

5. Using the Table Convention
13

1. Overview

Desktop Management Interface (DMI) is a method of managing computers in an enterprise. The main component of DMI is the Management Information Format Database, or MIF. This database contains all the information about the computing system and its components. Using DMI, a system administrator can obtain the types, capabilities, operational status, installation date, and other information about the system components.

The Desktop Management Interface Specification and its companion MASTER.MIF define “manageable attributes that are expected to be supported by DMI-enabled computer systems”. Many of these attributes have no standard interface to the management software, but are known by the system BIOS. The System Management BIOS Reference Specification provides that interface via data structures through which the system attributes are reported — see Accessing SMBIOS Information on page 11 for the definition of these interfaces.

1.1 Statement of Direction — Dynamic Information and Events

The current version of this specification provides an inter-operable method (see 2.1 Table Convention on page 11) for the access of static system data. A future version of this specification will define methods compatible with the Automatic Configuration and Power Interface Specification (ACPI) that provide access to dynamic system data and events.

1.2 References

· Advanced Configuration and Power Interface Specification, Version 1.0, December 23 1996, http://www.teleport.com/~acpi
· BIOS Boot Specification, Version 1.01, 11 January 1996, http://www.phoenix.com/techs/specs.html
· Boot Integrity Services API, Version 1.00, <date TBD>, http://www.intel.com/ial/wfm/wfmspecs.htm
· Desktop Management Interface Specification, Version 2.0, March 29, 1996, www.dmtf.org/tech/specs.html

· DMTF MASTER.MIF, Version 980518, www.dmtf.org/tech/apps.html
· DMTF DMI 2.0 Conformance Requirements Version 1.1, 10 December 1997, www.dmtf.org/tech/specs.html

· DMTF Mobile Supplement to Standard Groups Version 1.02, 23 September 1997, www.dmtf.org/tech/apps.html

· “El Torito” Bootable CD-ROM Format Specification, Version 1.0, January 25 1995, http://www.ptltd.com/techs/specs.html

· PCI IRQ Routing Table Specification, Version 1.0, 27 February 1996, http://www.microsoft.com/hwdev/busbios/PCIIRQ.HTM
· Plug and Play BIOS Specification, Version 1.0A, May 5, 1994, ftp://ftp.microsoft.com/developr/drg/Plug-and-Play/Pnpspecs/pnpbios.exe
· Simple Boot Flag Specification, Version 1.0, 06 April, 1998, http://www.microsoft.com/hwdev/desinit/simp_bios.htm
· Smart Battery Data Specification, Version 1.0, 15 February 1995, www.sbs-forum.org
· System Standard Groups Definition, Version 1.0, 1 May 1996, http://www.dmtf.org/tech/apps.html
1.3 Conventions Used in this Document

1. All numbers specified in this document are in decimal format unless otherwise indicated. A number followed by the letter ‘h’ indicates hexadecimal format; a number followed by the letter ‘b’ indicates binary format.

For example, the values 10, 0Ah, and 1010b are equivalent.

2. Any value not listed in an enumerated list is reserved for future assignment by either this specification or the DMTF (depending on the list-value controlling body).

3. Most of the enumerated values defined in this specification simply track the like values specified by the DMTF — either within the DMTF’s MASTER.MIF or the DMTF Mobile Supplement to Standard Groups. Enumerated values that are controlled by the DMTF are identified within their respective subsection; additional values for these fields are assigned by the DMTF, not this specification.

2. Accessing SMBIOS Information

There are two access methods defined for the SMBIOS structures:

1. The first method, defined in v2.0 of this specification, provides the SMBIOS structures through a Plug-and-Play function interface, see 2.2 Plug-and-Play Calling Convention on page 13.

2. A table-based method, defined in v2.1 of this specification, provides the SMBIOS structures as a packed list of data referenced by a table entry point; see 2.1 Table Convention on page 11.

A BIOS compliant with v2.1 of this specification can provide one or both methods. A BIOS compliant with v2.2 and later of this specification must provide the table-based method and can optionally provide the Plug-and-Play function interface.
Note: An SMBIOS implementation that provides only the table-based method might cause some existing DMI browsers to no longer work.

2.1 Table Convention

The table convention allows the SMBIOS structures to be accessed under 32-bit protected-mode operating systems such as Microsoft Windows NT*. This convention provides a searchable entry-point structure that contains a pointer to the packed SMBIOS structures residing somewhere in 32-bit physical address space.

Note: The table convention is required for SMBIOS v2.2 and later implementations.

2.1.1 SMBIOS Structure Table Entry Point

The SMBIOS Entry Point structure, described below, can be located by application software by searching for the anchor-string on paragraph (16-byte) boundaries within the physical memory address range 000F0000h to 000FFFFFh. This entry point encapsulates an intermediate anchor string that is used by some existing DMI browsers.

Note: While the SMBIOS Major and Minor Versions (offsets 06h and 07h) currently duplicate the information present in the SMBIOS BCD Revision (offset 1Dh), they provide a path for future growth in this specification. The BCD Revision, for example, provides only a single digit for each of the major and minor version numbers.

Offset
Name
Length
Description

00h
Anchor String
4 BYTEs
SM, specified as four ASCII characters (5F 53 4D 5F).

04h
Entry Point Structure Checksum
BYTE
Checksum of the Entry Point Structure (EPS). This value, when added to all other bytes in the EPS, will result in the value 00h (using 8-bit addition calculations). Values in the EPS are summed starting at offset 00h, for Entry Point Length bytes.

05h
Entry Point Length
BYTE
Length of the Entry Point Structure, starting with the Anchor String field, in bytes, currently 1Fh.

Note: This value was incorrectly stated in v2.1 of this specification as 1Eh. Because of this, there might be v2.1 implementations that use either the 1Eh or 1Fh value, but v2.2 or later implementations must use the 1Fh value.

06h
SMBIOS Major Version
BYTE
Identifies the major version of this specification implemented in the table structures, e.g. the value will be 0Ah for revision 10.22 and 02h for revision 2.1.

07h
SMBIOS Minor Version
BYTE
Identifies the minor version of this specification implemented in the table structures, e.g. the value will be 16h for revision 10.22 and 01h for revision 2.1.

08h
Maximum Structure Size
WORD
Size of the largest SMBIOS structure, in bytes, and encompasses the structure’s formatted area and text strings. This is the value returned as StructureSize from the Plug-and-Play Get SMBIOS Information function.

0Ah
Entry Point Revision
BYTE
Identifies the EPS revision implemented in this structure and identifies the formatting of offsets 0Bh to 0Fh, one of:

00h
Entry Point is based on SMBIOS 2.1 definition, formatted area is reserved and set to all 00h.

01h-FFh Reserved for assignment via this specification

0Bh - 0Fh
Formatted Area
5 BYTEs
The value present in the Entry Point Revision field defines the interpretation to be placed upon these 5 bytes.

10h
Intermediate anchor string
5 BYTEs
DMI, specified as five ASCII characters (5F 44 4D 49 5F). Note: This field is paragraph-aligned, to allow legacy DMI browsers to find this entry point within the SMBIOS Entry Point Structure.

15h
Intermediate Checksum
BYTE
Checksum of Intermediate Entry Point Structure (IEPS). This value, when added to all other bytes in the IEPS, will result in the value 00h (using 8-bit addition calculations). Values in the IEPS are summed starting at offset 10h, for 0Fh bytes.

16h
Structure Table Length
WORD
Total length of SMBIOS Structure Table, pointed to by the Structure Table Address, in bytes.

18h
Structure Table Address
DWORD
The 32-bit physical starting address of the read-only SMBIOS Structure Table, that can start at any 32-bit address. This area contains all of the SMBIOS structures fully packed together. These structures can then be parsed to produce exactly the same format as that returned from a Get SMBIOS Structure function call.

1Ch
Number of SMBIOS Structures
WORD
Total number of structures present in the SMBIOS Structure Table. This is the value returned as NumStructures from the Get SMBIOS Information function.

1Eh
SMBIOS BCD Revision
BYTE
Indicates compliance with a revision of this specification. It is a BCD value where the upper nibble indicates the major version and the lower nibble the minor version. For revision 2.1, the returned value is 21h. If the value is 00h, only the Major and Minor Versions in offsets 6 and 7 of the Entry Point Structure provide the version information.

2.2 Plug-and-Play Calling Convention

To prevent the proliferation of interfaces for accessing information embedded in the System BIOS, the System Management BIOS Reference Specification will follow the System Device Node model used by Plug and Play, and use Plug and Play BIOS functions to access DMI information. Plug and Play functions 50h-5Fh have been assigned to the SMBIOS BIOS Interface.

Each of the SMBIOS BIOS Plug-and-Play functions is available both in real-mode and 16-bit protected-mode. A function called in 16-bit protected-mode supports both 16-bit and 32-bit stack segments.

2.2.1 SMBIOS Functions

This table defines the current SMBIOS Functions.

SMBIOS Function
Function Number
Description
Required/Optional

GET_DMI_INFORMATION
50h
Returns the Number of Structures, the Size of the Largest Structure, and the SMBIOS Revision.
Required for calling interface

GET_DMI_STRUCTURE
51h
Copies the information for the specified Structure into the buffer specified by the caller.
Required for calling interface

SET_DMI_STRUCTURE
52h
Copies the information for the specified SMBIOS structure from the buffer specified by the caller.
Optional

GET_DMI_STRUCTURE_

CHANGE_INFO
53h
Returns the SMBIOS Structure Change Information into a 16-byte buffer specified by the caller.
Required for Dynamic Structure-change Notification Support

DMI_CONTROL
54h
Controls a system action
Optional

GET_GPNV_INFORMATION
55h
Returns information about the General Purpose Non-Volatile Storage Area
Required for GPNV Support

READ_GPNV_DATA
56h
Reads the entire specified GPNV contents into a buffer specified by the caller.
Required for GPNV Support

WRITE_GPNV_DATA
57h
Copies the contents of the user specified buffer into the GPNV. The function causes the entire specified GPNV to be updated.
Required for GPNV Support

Reserved for Future Use
58h-5Fh
Reserved, will return DMI_FUNCTION_NOT_

SUPPORTED.
Reserved

2.2.2 Error Return Codes

After the call has been made, the following return codes are available in the AX Register.

Return Code
Value
Description

DMI_SUCCESS
00h
Function Completed Successfully

DMI_UNKNOWN_FUNCTION
81h
Unknown, or invalid, function number passed

DMI_FUNCTION_NOT_SUPPORTED
82h
The function is not supported on this system

DMI_INVALID_HANDLE
83h
SMBIOS Structure number/handle passed is invalid or out of range.

DMI_BAD_PARAMETER
84h
The function detected invalid parameter or, in the case of a “Set SMBIOS Structure” request, detected an invalid value for a to-be-changed structure field.

DMI_INVALID_SUBFUNCTION
85h
The SubFunction parameter supplied on a SMBIOS Control function is not supported by the system BIOS.

DMI_NO_CHANGE
86h
There are no changed SMBIOS structures pending notification.

DMI_ADD_STRUCTURE_FAILED
87h
Returned when there was insufficient storage space to add the desired structure.

DMI_READ_ONLY
8Dh
A “Set SMBIOS Structure” request failed because one or more of the to-be-changed structure fields are read-only.

DMI_LOCK_NOT_SUPPORTED
90h
The GPNV functions do not support locking for the specified GPNV handle.

DMI_CURRENTLY_LOCKED
91h
The GPNV lock request failed - the GPNV is already locked.

DMI_ INVALID_LOCK
92h
The caller has failed to present the predefined GPNVLock value which is expected by the BIOS for access of the GPNV area.

2.2.3 SMBIOS Structure Access Interface

2.2.3.1 Function 50h – Get SMBIOS Information

Synopsis:

short FAR (*entryPoint)(

 short Function,
/* PnP BIOS Function 50h */

 unsigned char FAR *dmiBIOSRevision,
/* Revision of the SMBIOS Extensions */

 unsigned short FAR *NumStructures,
/* Max. Number of Structures the BIOS will return */

 unsigned short FAR *StructureSize,
/* Size of largest SMBIOS Structure */

 unsigned long FAR *dmiStorageBase,
/* 32-bit physical base address for memory-mapped */

/* SMBIOS data */

 unsigned short FAR *dmiStorageSize,
/* Size of the memory-mapped SMBIOS data */

 unsigned short BiosSelector);
/* PnP BIOS readable/writable selector */

Description:

Required for SMBIOS Calling Interface Support. This function will return the revision of the SMBIOS Extensions and the maximum number of SMBIOS structures that the system BIOS will return information for in NumStructures. These structures represent the SMBIOS information that is embedded in the System BIOS. In addition to the number of structures, the system BIOS will return the size, in bytes, of the largest SMBIOS structure (and all of its supporting data) in StructureSize. This information can be utilized by the system software to determine the amount of memory required to get all of the SMBIOS structures. Note: The system BIOS may return a value that is larger than the actual largest SMBIOS structure to facilitate hot docking or other dynamic SMBIOS information. The BIOS may also return fewer than NumStructures when the structures are retrieved using Function 51h. If the BIOS does not support SMBIOS calling interface capability, DMI_FUNCTION_NOT_SUPPORTED (82h) will be returned.

The dmiBIOSRevision parameter indicates compliance with a revision of this specification. It is a BCD value where the upper nibble indicates the major version and the lower nibble the minor version. For revision 2.0 the returned value will be 20h.

dmiStorageBase is updated by the BIOS call with the paragraph-aligned, 32-bit absolute physical base address of any memory-mapped SMBIOS structure information. If non-zero, this value allows the caller to construct a 16-bit data segment descriptor with a limit of dmiStorageSize and read/write access for subsequent input to functions 51h to 54h. If dmiStorageBase is 0, protected-mode mapping is not required.

In addition, dmiStorageSize identifies the dmiWorkBuffer size for input to function 52h and the Data buffer size for function 54h’s DMI_CLEAR_EVENT_LOG2 sub-function. Note: This feature is SMBIOS version-specific; for v2.0 implementations, the value of dmiStorageSize has no meaning if dmiStorageBase is 0. In this case, the buffer-sizing is provided by (NumStructures * StructureSize).

The BiosSelector parameter enables the system BIOS, if necessary, to update system variables that are contained in the system BIOS memory space. If this function is called from protected mode, the caller must create a data segment descriptor using the 16-bit Protected Mode data segment base address specified in the Plug and Play Installation Check data structure, a limit of 64KB, and the descriptor must be read/write capable. If this function is called from real mode, BiosSelector should be set to the Real mode 16-bit data segment address as specified in the Plug and Play Installation Check Structure. Refer to section 4.4 of the Plug and Play BIOS Specification revision 1.0a for more information on the Plug and Play Installation Check Structure and the elements that make up the structure.

This function is available in real mode and 16-bit protected mode.

Returns:

If successful - DMI_SUCCESS

If an Error (Bit 7 set) or a Warning occurred the Error Code will be returned in AX, the FLAGS and all other registers will be preserved.

Example:

The following example illustrates how the ‘C’ style call interface could be made from an assembly language module:

push
BiosSelector

push
segment/selector of dmiStorageSize
; Pointer to DMIStorageSize

push
offset of dmiStorageSize

push
segment/selector of dmiStorageBase
; Pointer to DMIStorageBase

push
offset of dmiStorageBase

push
segment/selector of StructureSize
; Pointer to StructureSize

push
offset of StructureSize

push
segment/selector of NumStructures
; Pointer to NumStructures

push
offset NumStructures

push
segment/selector of dmiBIOSRevision
; Pointer to DMIBIOSRevision

push
offset dmiBIOSRevision

push
GET_DMI_INFORMATION

; Function number, 50h

call
FAR PTR entryPoint

add
sp, 24

; Clean up stack

cmp
ax, DMI_SUCCESS

; Function completed successfully?

jne
error

2.2.3.2 Function 51h – Get SMBIOS Structure

Synopsis:

short FAR (*entryPoint)(

 short Function,
/* PnP BIOS Function 51h */

 unsigned short FAR *Structure,
/* Structure number/handle to retrieve*/

 unsigned char FAR *dmiStrucBuffer,
/* Pointer to buffer to copy structure data to */

 unsigned short dmiSelector,
/* SMBIOS data read/write selector */

 unsigned short BiosSelector);
/* PnP BIOS readable/writable selector */

Description:

Required for SMBIOS Calling Interface Support. This function will copy the information for the specified SMBIOS Structure into the buffer specified by the caller. The Structure argument is a pointer to the unique SMBIOS Structure number (handle). If Structure contains zero, the system BIOS will return the first SMBIOS Structure. The dmiStrucBuffer argument contains the pointer to the caller’s memory buffer. If the function returns either DMI_SUCCESS or DMI_INVALID_HANDLE, Structure is updated with either the next sequential structure handle or the end-of-list indicator 0FFFFh.

The protected-mode read/write selector dmiSelector has base equal to dmiStorageBase and limit of at least dmiStorageSize — so long as the dmiStorageBase value returned from Function 50h was non-zero.
The BiosSelector parameter enables the system BIOS, if necessary, to update system variables that are contained in the system BIOS memory space. If this function is called from protected mode, the caller must create a data segment descriptor using the 16-bit Protected Mode data segment base address specified in the Plug and Play Installation Check data structure, a limit of 64KB, and the descriptor must be read/write capable. If this function is called from real mode, BiosSelector should be set to the Real mode 16-bit data segment address as specified in the Plug and Play Installation Check Structure. Refer to section 4.4 of the Plug and Play BIOS Specification revision 1.0a for more information on the Plug and Play Installation Check Structure and the elements that make up the structure.

This function is available in real mode and 16-bit protected mode.

Returns:

If successful - DMI_SUCCESS

If an Error (Bit 7 set) or a Warning occurred, the Error Code will be returned in AX, the FLAGS and all other registers will be preserved

Example:

The following example illustrates how the ‘C’ style call interface could be made from an assembly language module:

push
BiosSelector

push
dmiSelector

push
segment/selector of dmiStrucBuffer
; Pointer to dmiStrucBuffer

push
offset of dmiStrucBuffer

push
segment/selector of Structure

; Pointer to Structure

push
offset of Structure

push
GET_ DMI_STRUCTURE

; Function number, 51h

call
FAR PTR entryPoint

add
sp, 14

; Clean up stack

cmp
ax, DMI_SUCCESS

; Function completed successfully?

jne
error

2.2.3.3 Function 52h – Set SMBIOS Structure

Synopsis:

short FAR (*entryPoint)(

 short Function,

/* PnP BIOS Function 52h */

 unsigned char FAR *dmiDataBuffer,

/* Pointer to buffer containing new/change data */

 unsigned char FAR *dmiWorkBuffer,

/* Pointer to work buffer area for the BIOS */

 unsigned char Control,

/* Conditions for performing operation */

 unsigned short dmiSelector,

/* SMBIOS data read/write selector */

 unsigned short BiosSelector);

/* PnP BIOS readable/writeable selector */

Description:

Optional. This function will set the SMBIOS structure identified by the type (and possibly handle) found in the SMBIOS structure header in the buffer pointed to by dmiDataBuffer. Values that the BIOS allows to be set in the supplied structure will either be updated by the call, or will cause the BIOS to perform some defined action (such as enabling a hardware option, etc.).

 Unless otherwise specified, all structures and structure values defined in Section 3, SMBIOS Structures, are read-only and cannot be set. Attempts to set these structures will return a DMI_READ_ONLY error. A structure field that is composed of read/write and read-only subfields can still be set -- so long as the read-only portion of the field is unmodified. Attempting to write to a read-only subfield will also cause a DMI_READ_ONLY to be returned.

The dmiDataBuffer parameter references a structure of the following format:

Offset
Field
Length
Description

00h
Command
BYTE
Identifies the structure-setting operation to be performed, one of:

00h
A single byte of information is to be changed in the structure identified by StructureHeader

01h
A word (two bytes) of information is to be changed in the
structure identified by StructureHeader

02h
A double-word (four bytes) of information is to be changed in the structure identified by StructureHeader

03h
The structure identified by StructureHeader is to be added to the SMBIOS structure pool

04h
The structure identified by StructureHeader is to be deleted from the SMBIOS structure pool

05h
A string’s value is to be changed in the structure identified by StructureHeader.

06h
A block of information (other than byte, word, or dword in size) is to be changed in the structure identified by StructureHeader.

07h-0FFh Reserved for future assignment by this specification.

01h
FieldOffset
BYTE
For a structure change Command, identifies the starting offset within the changed structure’s fixed data of the to-be-changed item. For a string-value change Command, identifies the offset within the structure’s fixed data associated with the string’s “number”. This field is ignored for all other Commands.

02h
ChangeMask
DWORD
For a fixed-length structure-change Command, identifies the ANDing mask to be applied to the existing structure data prior to applying the ChangeValue. The number of significant bytes within this area is defined by the Command. This field is ignored for all other Commands.

06h
ChangeValue
DWORD
For a fixed-length structure-change Command, identifies the data value to be ORed with the existing structure data – after applying the ChangeMask. The number of significant bytes within this area is defined by the Command. This field is ignored for all other Commands.

0Ah
DataLength
WORD
For a structure-add Command, identifies the full length of the to-be-added structure. The length includes the structure header, the fixed-length portion of the structure, and any string data which accompanies the added structure – including all null-terminators. For a string-value change Command, identifies the length of the string data (including the null-terminator); if the length is 1 (indicating that only the null-terminator is provided), the current string’s data is deleted so long as the string’s data-access rights are met. For a variable-length block change Command, identifies the length of the contiguous data block to be changed. This field is ignored for all other Commands.

0Ch
StructureHeader
4 BYTEs
Contains the structure header (see Structure Header Format on page 13) of the structure to be added, changed, or deleted.

10h
StructureData
Var
For a structure-add Command, contains the data to be associated with the SMBIOS Structure identified by the StructureHeader. For a string-value change Command, contains the string’s data (the number of characters is identified by DataLength). For a variable-length block change Command, contains the block’s data (the number of bytes is identified by DataLength). This field is ignored for all other Commands.

The dmiWorkBuffer parameter references a work buffer for use by the BIOS in performing the request; the contents of the buffer are destroyed by the BIOS’ processing. This work buffer must be read/write and sized to hold the entire SMBIOS structure pool, based on the information returned by Function 50h – Get SMBIOS Information (see page 13) plus the size of any structure to be added by the request. For SMBIOS v2.0 implementations, the pool size is specified by the maximum of (StructureSize * NumStructures) and (when dmiStorageBase is non-zero) dmiStorageSize; for v2.1 and later implementations, the pool size is specified by dmiStorageSize.

The Control flag provides a mechanism for indicating to the BIOS whether the set request is to take effect immediately, or if this is a check to validate the to-be-updated data.

Control is defined as:

Bit 0
0 = Do not set the specified structure, but validate its parameters.

1 = Set the structure immediately.

Bits 1:7
Reserved, must be 0.

If bit 0 of Control is 0, then the dmiDataBuffer values are checked for validity. If any are not valid, then the function returns DMI_BAD_PARAMETER; if any read-only field is modified, the function returns DMI_READ_ONLY. Validity checking is useful to determine if the BIOS supports setting a structure field to a particular value – or whether the BIOS supports writing to a specific structure field. For example, it may be useful for an OEM to determine beforehand whether the OEM's BIOS supports a "Reboot to Diagnostics Now" setting in an OEM-defined structure.

The protected-mode read/write selector dmiSelector has base equal to dmiStorageBase and a limit of at least dmiStorageSize, so long as the dmiStorageBase returned from Function 50h – Get SMBIOS Information was non-zero.

The BiosSelector parameter enables the system BIOS, if necessary, to update system variables that are contained in the system BIOS memory space. If this function is called from protected mode, the caller must create a data segment descriptor using the 16-bit Protected Mode data segment base address specified in the Plug and Play Installation Check data structure, a limit of 64KB, and the descriptor must be read/write capable. If this function is called from real mode, BiosSelector should be set to the Real mode 16-bit data segment address as specified in the Plug and Play Installation Check Structure. Refer to section 4.4 of the Plug and Play BIOS Specification revision 1.0a for more information on the Plug and Play Installation Check Structure and the elements that make up the structure.

This function is available in real mode and 16-bit protected mode.

Note: If the system BIOS supports structure-change notification, a structure-change event will be issued by the BIOS upon its successful completion of a structure-setting (rather than validation) function call. See Structure Change Notification Interface on page 13 for more information.

Returns:

If successful - DMI_SUCCESS

If an error occurred, the Error Code will be returned in AX. The FLAGS and all other registers will be preserved.

Errors:

DMI_BAD_PARAMETER

A parameter contains an invalid or unsupported value.

DMI_READ_ONLY

A parameter is read-only and differs from the present value –

an attempt was made to modify a read-only value.

DMI_ADD_STRUCTURE_FAILED
The desired structure could not be added due to insufficient storage
space.

DMI_INVALID_HANDLE
For an add (03h) Command, the structure handle present in the StructureHeader already exists or, for a change (00h to 02h and 05h) or delete (04h) Command, the structure handle does not exist.

Example:

The following example illustrates how the 'C' style call interface could be made from an assembly language module:

push
BiosSelector

push

dmiSelector

push
Control

push

segment/selector of dmiWorkBuffer
;pointer to BIOS temporary buffer

push

offset of dmiWorkBuffer

push
segment/selector of dmiDataBuffer
; pointer to structure

push
offset of dmiDataBuffer

push
SET_DMI_STRUCTURE

; Function number, 52h

call
FAR PTR entryPoint

add
sp, 16
; clean stack

cmp
ax, DMI_SUCCESS
; Successful?

jne
error
; No, go handle error

2.2.4 Structure Change Notification Interface

Certain classes of systems may provide the capability for the addition or removal of system devices while the system unit is powered on, such as inserting a Notebook unit into a Docking Station. System BIOS support is necessary for providing SMBIOS Structure Change Notification accessible to system software so that when devices are added or removed the system software will comprehend any changes in the SMBIOS Structures. Structure Change Notification can be implemented as either a polled method or as asynchronous Plug-and-Play events. For information on how Plug-and-Play event notification is accessed, see section 4.6 of the Plug and Play BIOS Specification revision 1.0a.

When system software is notified on an event by either mechanism, it can then call the BIOS runtime function (Plug and Play BIOS Function 3 - Get Event) to get the type of event. In addition to the events defined in the Plug and Play BIOS Specification, the following event has been defined.

Note: Some DMI structure values might be inherently changing (e.g. an OEM-specific structure which returns system temperature and voltage values). Due to the frequency of the values’ change, the BIOS might not return Structure Change status for this type of structure.

DMI_STRUCTURE_CHANGE_EVENT

7FFFh

This message indicates that there has been a change in the DMI Information being maintained by the System BIOS. Upon receiving a DMI_STRUCTURE_CHANGE_EVENT, system software can call the BIOS runtime function 53h (Get Structure Change Information) to determine the exact cause of the SMBIOS structure-change event.

2.2.4.1 Function 53h – Get Structure Change Information

Synopsis:

short FAR (*entryPoint)(

 short Function,
/* PnP BIOS Function 53h */

 unsigned char FAR *dmiChangeStructure,
/* Pointer to SMBIOS Change structure */

 unsigned short dmiSelector,
/* SMBIOS data read/write selector */

 unsigned short BiosSelector);
/* PnP BIOS readable/writable selector */

Description:

Required for SMBIOS Dynamic Structure Change Notification Support. This function will allow system software to get information about what type of SMBIOS structure-change occurred. The SMBIOS structure-change information will be returned in the 16-byte memory buffer pointed to by dmiChangeStructure in the following format:

Field
Offset
Length
Value

SMBIOS Change Status
00h
BYTE
ENUM

SMBIOS Change Type
01h
BYTE
Bit Field

SMBIOS Structure Handle
02h
WORD
Varies

Reserved
04h-0Fh
12 BYTEs
00h

SMBIOS Change Status:

00h

No Change

01h

Other

02h

Unknown

03h

Single SMBIOS Structure Affected

04h

Multiple SMBIOS Structures Affected

05h - 0FFh
Reserved

SMBIOS Change Type:

Bit 0

One or more structures was changed, when 1.

Bit 1

One or more structures was added, when 1. See “Function 52h – Set DMI Structure”

for information about adding SMBIOS structures.

Byte 2:7
Reserved, must be 0

If DMI Change Status 03h (Single Structure Affected) is returned, the number (or handle) of the affected structure is present in the "DMI Structure Handle" field; DMI Change Type identifies whether the structure was changed (01h) or added (02h).

If DMI Change Status 04h (Multiple DMI Structures Affected) is returned, the caller must enumerate all the structures to determine what was changed and/or added. DMI Change Type identifies whether multiple structures were changed (01h), multiple structures were added (02h), or structures were both changed and added (03h).

The DMI Change Status Byte remains valid until Function 53h is called. The calling of Function 53h will reset the DMI Change Status Byte to zero. If the call is issued in the absence of a DMI event, the function returns error code 86h (DMI_NO_CHANGE).

The protected-mode read/write selector dmiSelector has base equal to dmiStorageBase and limit of at least dmiStorageSize — so long as the dmiStorageBase value returned from Function 50h was non-zero.
The BiosSelector parameter enables the system BIOS, if necessary, to update system variables that are contained in the system BIOS memory space. If this function is called from protected mode, the caller must create a data segment descriptor using the 16-bit Protected Mode data segment base address specified in the Plug and Play Installation Check data structure, a limit of 64KB, and the descriptor must be read/write capable. If this function is called from real mode, BiosSelector should be set to the Real mode 16-bit data segment address as specified in the Plug and Play Installation Check Structure. Refer to section 4.4 of the Plug and Play BIOS Specification revision 1.0a for more information on the Plug and Play Installation Check Structure and the elements that make up the structure.

This function is available in real mode and 16-bit protected mode.

Returns:

If successful - DMI_SUCCESS

If an Error (Bit 7 set) or a Warning occurred the Error Code will be returned in AX, the FLAGS and all other registers will be preserved

Example:

The following example illustrates how the ‘C’ style call interface could be made from an assembly language module:

push
BiosSelector

push
dmiSelector

push
segment/selector of dmiChangeStructure

push
offset of dmiChangeStructure

push
GET_ DMI_STRUCTURE_CHANGE_INFO
; Function number, 53h

call
FAR PTR entryPoint

add
sp, 10

; Clean up stack

cmp
ax, DMI_SUCCESS

; Function completed successfully?

jne
error

2.2.5 Control Interface

2.2.5.1 Function 54h – SMBIOS Control

Synopsis:

short FAR (*entryPoint)(

 short Function,

/* PnP BIOS Function 54h */

 short SubFunction,

/* Defines the specific control operation */

 void FAR *Data,

/* Input/output data buffer, SubFunction specific */

 unsigned char Control,

/* Conditions for setting the structure */

 unsigned short dmiSelector,

/* SMBIOS data read/write selector */

 unsigned short BiosSelector);
/* PnP BIOS readable/writeable selector */

Description:

Optional. This function provides the interface to perform implementation-specific functions for the system, as defined by the SubFunction parameter and its (optional) Data values.

SubFunction
Name
Description

0000h
DMI_CLEAR_EVENT_LOG
Clears the event log as described in System Event Log (Type 15) on page 13. The Data parameter is reserved and must be set to 0.

0001h
DMI_CONTROL_LOGGING
Data points to a 2-word (4-byte) buffer that describes how to control event logging – see 2.2.5.1.1 for bit-wise definitions. The first word (offset 0:1) identifies the ANDing mask to be applied to the existing log-control value prior to ORing the second word (offset 2:3). The second word is modified by the BIOS to contain the log-control value on entry to this function.

0002h
DMI_CLEAR_EVENT_LOG2
Clears the event log as described in System Event Log (Type 15) on page 13. The Data parameter is the 32-bit physical address of a work buffer needed to perform this operation. The buffer must be read/write and sized to hold dmiStorageSize bytes. The contents of the buffer are destroyed by the BIOS’ processing. This sub-function is defined for v2.1 and later implementations of this specification and is preferred over the DMI_CLEAR_EVENT_LOG (0000h) sub-function.

0003h-3FFFh
Reserved
Reserved for future definition by this specification.

4000h-7FFFh
Reserved for BIOS vendor
Available for use by the BIOS vendor.

8000h-FFFFh
Reserved for system vendor
Available for use by the system vendor.

Note: A BIOS might support the Log Control function but not support all the SubFunction values.

The Control flag provides a mechanism for indicating to the BIOS whether the operation is to be performed immediately, or if this is a check to validate the operation’s availability and/or data.

Control is defined as:

Bit 0
0 = Do not perform the operation, but validate its parameters.

1 = Perform the operation immediately.

Bits 1:7
Reserved, must be 0.

If bit 0 of Control is 0, then the SubFunction and contents of Data are checked for validity. If any are not valid, then the function returns DMI_BAD_PARAMETER. Validity checking is useful to determine if the BIOS supports a specific DMI Control SubFunction.

The protected-mode read/write selector dmiSelector has base equal to dmiStorageBase and limit of at least dmiStorageSize — so long as the dmiStorageBase value returned from Function 50h was non-zero.

The BiosSelector parameter enables the system BIOS, if necessary, to update system variables that are contained in the system BIOS memory space. If this function is called from protected mode, the caller must create a data segment descriptor using the 16-bit Protected Mode data segment base address specified in the Plug and Play Installation Check data structure, a limit of 64KB, and the descriptor must be read/write capable. If this function is called from real mode, BiosSelector should be set to the Real mode 16-bit data segment address as specified in the Plug and Play Installation Check Structure. Refer to section 4.4 of the Plug and Play BIOS Specification revision 1.0a for more information on the Plug and Play Installation Check Structure and the elements that make up the structure.

This function is available in real mode and 16-bit protected mode.

Returns:

If successful - DMI_SUCCESS

If an error occurred, the Error Code will be returned in AX. The FLAGS and all other registers will be preserved.

Errors:

DMI_BAD_PARAMETER
The Data contents were not valid for the requested SubFunction.

DMI_INVALID_SUBFUNCTION
The SubFunction requested is not supported by the system BIOS.

Example:

The following example illustrates how the 'C' style call interface could be made from an assembly language module:

push
BiosSelector

push

dmiSelector

push
Control

push

segment/selector of Data

; pointer to SubFunction data

push

offset of Data

push
SubFunction

push
DMI_CONTROL

; Function number, 54h

call
FAR PTR entryPoint

add
sp, 14
; clean stack

cmp
ax, DMI_SUCCESS
; Successful?

jne
error
; No, go handle error

2.2.5.1.1 DMI_CONTROL_LOGGING Control Word

Word Bit Position
Meaning if Set

0
Enable Event Logging (overall)

1
Enable Correctable Memory Error Events’ Logging

2
Disable the logging of POST errors

3 - 15
Reserved for future assignment by this specification, set to 0.

2.2.6 General Purpose Nonvolatile Storage Interface

A General-Purpose NonVolatile (GPNV) area is a persistent general-purpose storage area managed by the System Management BIOS. Multiple GPNV areas can be supported by a particular BIOS implementation. The size, format and location of a GPNV are not defined by this specification nor is the number of GPNV areas — these attributes are OEM-specific.

A GPNV storage area is not a requirement for a System Management BIOS. It is one method that might be used to store the System Event Log (see section 3.3.16, page 13). A GPNV storage area is not necessarily dedicated to the System Management functions of the BIOS, it can also be used by other services which require non-volatile storage.

A Handle parameter is passed into the GPNV function calls to specify which GPNV area is to be accessed. The Handle for the first GPNV area is 0, with remaining GPNV areas identified by Handle values 1, 2, 3... n, where (n+1) is the total number of GPNV areas supported by a particular BIOS implementation.

A GPNVLock parameter provides a mechanism for cooperative use of the GPNV. The GPNVLock value is set on a Read GPNV request (function 56h) and cleared on a Write GPNV request (function 57h). The BIOS compares the value of the GPNVLock which is set on a Read GPNV request with the value of the GPNVLock passed as a parameter into the GPNV Write request — if they match, the GPNV Write request succeeds and the GPNV data area will be updated on completion of the GPNV Write; if the lock values do not match, the BIOS does not update the GPNV area and DMI_CURRENTLY_LOCKED is returned. Note: GPNV locks are held until unlocked, even through system power and reboot cycles. The method used to preserve the GPNV Locks through boot cycles is left up to the system designer.

A BIOS might choose to “hide” a GPNV area by defining a special lock value which is required to access the area. In this case, the special GPNVLock value must be supplied with the GPNV read and write requests or the function is failed by the BIOS with DMI_INVALID_LOCK.

A lock set request succeeds when there is no outstanding lock set at the time that the Read GPNV request (Function 56h) is made. A lock set request fails when there is already a lock set as the result of a previous Read GPNV request (which has not yet been cleared with a Function 57h Write GPNV request) or when a predefined lock value is required in order to access a particular GPNV area and the GPNVLock value provided by the caller does not match the required value.

The BIOS makes no attempt to enforce mutually-exclusive access to the GPNV — it is up to callers of GPNV Read to ensure unique GPNVLock values (e.g. process ID).

2.2.6.1 Function 55H – Get General-Purpose NonVolatile Information

Synopsis:

short FAR (*entryPoint)(

 short Function,

/* PnP BIOS Function 55h */

 unsigned short FAR *Handle,

/* Identifies which GPNV to access */

 unsigned short FAR *MinGPNVRWSize,
/* Minimum buffer size in bytes for accessing GPNV */

 unsigned short FAR *GPNVSize,
/* Size allocated for GPNV within the R/W Block */

 unsigned long FAR *NVStorageBase,
/* 32-bit physical base address for... */

/* ... mem. mapped nonvolatile storage media */

 unsigned short BiosSelector);
/* PnP BIOS readable/writable selector */

Description: Required for GPNV support. This function returns information about a General Purpose NonVolatile (GPNV) area. The Handle argument is a pointer to a number that identifies which GPNV’s information is requested, a value of 0 accesses the first (or only) area.

On return:

*Handle is updated either with the handle of the next GPNV area or, if there are no more areas, 0FFFFh. GPNV handles are assigned sequentially by the system, from 0 to the total number of areas (minus 1).

*MinGPNVRW Size is updated with the minimum size, in bytes, of any buffer used to access this GPNV area. For a Flash based GPNV area, this would be the size of the Flash block containing the actual GPNV.

*GPNVSize is updated with the size, in bytes, of this GPNV area (which is less than or equal to the MinGPNVRWSize value).

*NVStorageBase is updated with the paragraph-aligned, 32-bit absolute physical base address of this GPNV. If non-zero, this value allows the caller to construct a 16-bit data segment descriptor with a limit of MinGPNVRWSize and read/write access. If the value is 0, protected-mode mapping is not required for this GPNV.

Returns:

If successful - DMI_SUCCESS

If an Error (Bit 7 set) or a Warning occurred the Error Code will be returned in AX, the FLAGS and all other registers will be preserved

Example:

The following example illustrates how the ‘C’ style call interface could be made from an assembly language module:

push
BiosSelector

push
segment/selector of NVStorageBase

push
offset of NVStorageBase

push
segment/selector of GPNVSize

push
offset of GPNVSize

push
segment/selector of MinGPNVRWSize

push
offset of MinGPNVRWSize

push
segment/selector of Handle

push
offset of Handle

push
GET_GPNV_INFORMATION
; Function number, 55h

call
FAR PTR entryPoint

add
sp, 20
; Clean up stack

cmp
ax, DMI_SUCCESS
; Function completed successfully?

jne
error

2.2.6.2 Function 56H – Read General-Purpose NonVolatile Data

Synopsis:

short FAR (*entryPoint)(

 short Function,

/* PnP BIOS Function 56h */

 unsigned short Handle,

/* Identifies which GPNV is to be read */

 unsigned char FAR *GPNVBuffer,
/* Address of buffer in which to return GPNV */

 short FAR *GPNVLock,

/* Lock value */

 unsigned short GPNVSelector,
/* Selector for GPNV Storage */

 unsigned short BiosSelector);
/* PnP BIOS readable/writable selector */

Description: Required for GPNV support. This function is used to read an entire GPNV area into the buffer specified by GPNVBuffer. It is the responsibility of the caller to ensure that GPNVBuffer is large enough to store the entire GPNV storage block - this buffer must be at least the MinGPNVRWSize returned by Function 55h - Get GPNV Information. The Handle argument identifies the specific GPNV to be read. On a successful read of a GPNV area, that GPNV area will be placed in the GPNVBuffer beginning at offset 0. The protected-mode selector GPNVSelector has base equal to NVStorageBase and limit of at least MinGPNVRWSize — so long as the NVStorageBase value returned from Function 55h was non-zero.
Passing a GPNVLock value of -1 to the GPNV Read causes the GPNVLock value to be ignored — in this case the underlying logic makes no attempt to store a lock value for comparison with lock values passed into GPNV Write. Any value provided for GPNVLock besides -1 is accepted as a valid value for a lock request.

Returns:

If the GPNV lock is supported and the lock set request succeeds, the caller’s GPNVLock is set to the value of the current lock and the function returns DMI_SUCCESS.

If the GPNV request fails, one of the following values is returned:

· DMI_ LOCK_NOT_SUPPORTED

· DMI_ INVALID_LOCK

· DMI_ CURRENTLY_LOCKED

For return status codes DMI_SUCCESS, DMI_LOCK_NOT_SUPPORTED and DMI_CURRENTLY_LOCKED, the GPNV Read function returns the current contents of the GPNV associated with Handle as the first GPNVSize bytes within GPNVBuffer, starting at offset 0. If a lock request fails with DMI_CURRENTLY_LOCKED status, the caller’s GPNVLock will be set to the value of the current lock.

Example:

The following example illustrates how the ‘C’ style call interface could be made from an assembly language module:

push
BiosSelector

push
GPNVSelector

push
segment/selector of GPNVLock

push
offset of GPNVLock

push
segment/selector of GPNVBuffer

push
offset of GPNVBuffer

push
Handle

push
READ_GPNV_DATA
; Function number, 56h

call
FAR PTR entryPoint

add
sp, 16
; Clean up stack

cmp
ax, DMI_SUCCESS
; Function completed successfully?

jne
error

2.2.6.3 Function 57H – Write General-Purpose NonVolatile Data

Synopsis:

short FAR (*entryPoint)(

 short Function,

/* PnP BIOS Function 57h */

 unsigned short Handle,

/* Identifies which GPNV is to be written */

 unsigned char FAR *GPNVBuffer,
/* Address of buffer containing complete GPNV to write*/

 short GPNVLock,

/* Lock value */

 unsigned short GPNVSelector,
/* Selector for GPNV Storage */

 unsigned short BiosSelector);
/* PnP BIOS readable/writable selector */

Description: Required for GPNV support. This function is used to write an entire GPNV from the GPNVBuffer into the nonvolatile storage area. The Handle argument identifies the specific GPNV to be written. The protected-mode selector GPNVSelector has base equal to NVStorageBase and limit of at least MinGPNVRWSize — so long as the NVStorageBase value returned from Get GPNV Information was non-zero. The caller should first call Read GPNV Data (with a lock) to get the current area contents, modify the data, and pass it into this function — this ensures that the GPNVBuffer which is written contains a complete definition for the entire GPNV area. If the BIOS uses some form of block erase device, the caller must also allocate enough buffer space for the BIOS to store all data from the part during the reprogramming operation, not just the data of interest.

The data to be written to the GPNV selected by Handle must reside as the first GPNVSize bytes of the GPNVBuffer. Note: The remaining (MinGPNVRWSize-GPNVSize) bytes of the GPNVBuffer area are used as a scratch-area by the BIOS call in processing the write request; the contents of that area of the buffer are destroyed by this function call.

The GPNVLock provides a mechanism for cooperative use of the GPNV, and is set during a GPNV Read (Function 56h). If the input GPNVLock value is -1 the caller requests a forced write to the GPNV area, ignoring any outstanding GPNVLock. If the caller is not doing a forced write, the value passed in GPNVLock to the GPNV Write must be the same value as that (set and) returned by a previous GPNV Read (Function 56h).

Returns:

The GPNV Write function returns a value of DMI_ LOCK_NOT_SUPPORTED when a GPNVLock value other than -1 is specified and locking is not supported. A return status of DMI_ CURRENTLY_LOCKED indicates that the call has failed due to an outstanding lock on the GPNV area which does not match the caller’s GPNVLock value. Any outstanding GPNVLock value (which was set by a previous Function 56H – Read General-Purpose NonVolatile Data) gets cleared on a successful write of the GPNV.

Example:

The following example illustrates how the ‘C’ style call interface could be made from an assembly language module:

push
BiosSelector

push
GPNVSelector

push
GPNVLock

push
segment/selector of GPNVBuffer

push
offset of GPNVBuffer

push
Handle

push
WRITE_GPNV_DATA
; Function number, 57h

call
FAR PTR entryPoint

add
sp, 14
; Clean up stack

cmp
ax, DMI_SUCCESS
; Function completed successfully?

jne
error

3. SMBIOS Structures

The total number of structures can be obtained either through the Get SMBIOS Information function (see 2.2.3.1 on page 13) or from the SMBIOS Entry Point Structure (see 2.1 Table Convention on page 11). The System Information is presented to an application as a set of structures that are obtained by either calling the Get SMBIOS Structure function once per structure (see 2.2.3.2 on page 13) or by traversing the SMBIOS structure table referenced by the SMBIOS Entry Point Structure (see 2.1 Table Convention on page 11).

3.1 Structure Standards

Each SMBIOS structure has a formatted section and an optional unformed section. The formatted section of each structure begins with a 4-byte header. Remaining data in the formatted section is determined by the structure type, as is the overall length of the formatted section.

3.1.1 Structure Evolution and Usage Guidelines

As the industry evolves, the structures defined in this specification will evolve. To ensure that the evolution occurs in a nondestructive fashion, the following guidelines must be followed:

1. If a new field is added to an existing structure, that field is added at the end of the formatted area of that structure and the structure’s Length field is increased by the new field’s size.

2. Any software which interprets a structure shall use the structure’s Length field to determine the formatted area size for the structure rather than hard-coding or deriving the Length from a structure field.

3. Each structure shall be terminated by a double-null (0000h), either directly following the formatted area (if no strings are present) or directly following the last string. This includes system- and OEM-specific structures and allows upper-level software to easily traverse the structure table. See below for structure-termination examples.

4. The unformed section of the structure is used for passing variable data such as text strings, see 3.1.3 Text Strings for more information.

5. When an enumerated field’s values are controlled by the DMTF, new values can be used as soon as they are defined by the DMTF without requiring an update to this specification.
6. Starting with v2.3, each SMBIOS structure type has a minimum length — enabling the addition of new, but optional, fields to SMBIOS structures. In no case shall a structure’s length result in a field being less than fully populated. For example, a Voltage Probe structure with Length of 15h is invalid since the Nominal Value field would not be fully specified.
Software that interprets a structure field must verify that the structure’s length is sufficient to encompass the optional field; if the length is insufficient, the optional field’s value as Unknown. For example, if a Voltage Probe structure has a Length field of 14h, the probe’s Nominal Value is Unknown. A Voltage Probe structure with Length greater than 14h always includes a Nominal Value field.
Example: BIOS Information with strings

BIOS_Info
LABEL BYTE

db
0

; Indicates BIOS Structure Type

db
13h

; Length of information in bytes

dw
?

; Reserved for handle

db
01h

; String 1 is the Vendor Name

db
02h

; String 2 is the BIOS version

dw
0E800h

; BIOS Starting Address

db
03h

; String 3 is the BIOS Build Date
db
1

; Size of BIOS ROM is 128K (64K * (1 + 1))

dq
BIOS_Char

; BIOS Characteristics

db
0

; BIOS Characteristics Extension Byte 1

db
‘System BIOS Vendor Name’,0
;

db
‘4.04’,0

;

db
‘00/00/0000’,0

;

db
0

; End of strings

Example: BIOS Information without strings (example-only)

BIOS_Info
LABEL BYTE

db
0

; Indicates BIOS Structure Type

db
13h

; Length of information in bytes

dw
?

; Reserved for handle

db
00h

; No Vendor Name provided

db
00h

; No BIOS version provided

dw
0E800h

; BIOS Starting Address

db
00h

; No BIOS Build Date provided
db
1

; Size of BIOS ROM is 128K (64K * (1 + 1))

dq
BIOS_Char

; BIOS Characteristics

db
0

; BIOS Characteristics Extension Byte 1

dw
0000h

; Structure terminator

3.1.2 Structure Header Format

Each SMBIOS structure begins with a 4-byte header, as follows:

Offset
Name
Length
Description

00h
Type
BYTE
Specifies the type of structure. Types 0 through 127 (7Fh) are reserved for and defined by this specification. Types 128 through 256 (80h to FFh) are available for system- and OEM-specific information.

01h
Length
BYTE
Specifies the length of the formatted area of the structure, starting at the Type field. The length of the structure’s string-set is not included.

02h
Handle
WORD
Specifies the structure’s handle, a unique 16-bit number in the range 0 to 0FFFEh (for version 2.0) or 0 to 0FEFFh (for version 2.1 and later). The handle can be used with the Get SMBIOS Structure function to retrieve a specific structure; the handle numbers are not required to be contiguous. For v2.1 and later, handle values in the range 0FF00h to 0FFFFh are reserved for use by this specification.

If the system configuration changes, a previously assigned handle might no longer exist. However once a handle has been assigned by the BIOS, the BIOS cannot re-assign that handle number to another structure.

3.1.3 Text Strings

Text strings associated with a given SMBIOS structure are returned in the dmiStrucBuffer, appended directly after the formatted portion of the structure. This method of returning string information eliminates the need for application software to deal with pointers embedded in the SMBIOS structure. Each string is terminated with a null (00h) BYTE and the set of strings is terminated with an additional null (00h) BYTE. When the formatted portion of a SMBIOS structure references a string, it does so by specifying a non-zero string number within the structure’s string-set. For example, if a string field contains 02h, it references the second string following the formatted portion of the SMBIOS structure. If a string field references no string, a null (0) is placed in that string field. If the formatted portion of the structure contains string-reference fields and all the string fields are set to 0 (no string references), the formatted section of the structure is followed by two null (00h) BYTES. See 3.1.1 Structure Evolution and Usage Guidelines on page 13 for a string-containing example.

Note: Each text string is limited to 64 significant characters due to system MIF limitations.
3.2 Required Structures and Data

Beginning with SMBIOS v2.3, compliant SMBIOS implementations include the following base set of required structures and data within those structures. For a detailed list of conformance guidelines, refer to 4.2 Conformance Guidelines on page 13.
Structure Name and Type
Data Requirements

BIOS Information (Type 0)
One and only one structure is present in the structure-table. BIOS Version and BIOS Release Date strings are non-null;. the date field uses a 4-digit year (e.g. 1999). All other fields reflect full BIOS support information

System Information (Type 1)
Manufacturer and Product Name strings are non-null. UUID field identifies the system’s non-zero UUID value. Wake-up Type field identifies the wake-up source and cannot be Unknown.

System Enclosure (Type 3)
Manufacturer string is non-null; the Type field identifies the type of enclosure (Unknown is disallowed).

Processor Information (Type 4)
One structure is required for each system processor. The presence of two structures with the Processor Type field set to Central Processor, for instance, identifies that the system is capable of dual-processor operations.

Socket Designation string is non-null. Processor Type, Max Speed, and Processor Upgrade fields are all set to “known” values — i.e. the Unknown value is disallowed for each field.

If the associated processor is present (i.e. the CPU Socket Populated sub-field of the Status field indicates that the socket is populated), the Processor Manufacturer string is non-null and the Processor Family, Current Speed, and CPU Status sub-field of the Status field are all set to “known” values.

Each of the Lx Cache Handle fields is either set to 0xFFFF (no further cache description) or references a valid Cache Information Structure.

Cache Information (Type 7)
One structure is required for each external-to-the-processor cache.

Socket Designation string is non-null if the cache is external to the processor. If the cache is present (i.e. the Installed Size is non-zero), the Cache Configuration field is set to a “known” value — i.e. the Unknown value is disallowed.

System Slots (Type 9)
One structure is required for each upgradeable system slot. A structure is not required if the slot must be populated for proper system operation (e.g. the system contains a single memory-card slot).

Slot Designation string is non-null. Slot Type, Slot Data Bus Width, Slot ID, and Slot Characteristics 1 & 2 are all set to “known” values.

If device presence is detectable within the slot (e.g. PCI), the Current Usage field must be set to either Available or In-use. Otherwise (e.g. ISA), the Unknown value for the field is also allowed.

Physical Memory Array (Type 16)
One structure is required for the system memory.

Location, Use, Memory Error Correction, and Maximum Capacity are all set to “known” values. Number of Memory Devices is non-zero and identifies the number of Memory Device structures that are associated with this Physical Memory Array.

Memory Device (Type 17)
One structure is required for each socketed system-memory device, whether or not the socket is currently populated; if the system includes soldered system-memory, one additional structure is required to identify that memory device.

Device Locator string is set to a non-null value. Memory Array Handle contains the handle associated with the Physical Memory Array structure to which this device belongs. Data Width, Size, Form Factor, and Device Set are all set to “known” values. If the device is present (i.e. Size is non-zero), the Total Width field is not set to 0xFFFF (Unknown).

Memory Array Mapped Address (Type 19)
One structure is required for each contiguous block of memory addresses mapped to a Physical Memory Array.

Ending Address is larger than Starting Address. Each structure’s address range is unique and non-overlapping. Memory Array Handle references a Physical Memory Array structure. Partition Width is non-zero.

Memory Device Mapped Address (Type 20)
Sufficient structures are required to map all enabled memory devices to their respective memory-array mapped addresses.

Ending Address is larger than Starting Address. Memory Device Handle references a Memory Device structure. Memory Mapped Address Handle references a Memory Array Mapped Address structure. Partition Row Position is neither 0 nor 0xFF, nor is it greater than the Partition Width of the referenced Memory Array Mapped Address structure. Interleave Position and Interleaved Data Depth are not set to 0xFF (Unknown).

System Boot Information (Type 32)
The structure’s length is at least 0x0B, i.e. at least one byte of System Boot Status is provided

3.3 Structure Definitions

3.3.1 BIOS Information (Type 0)

Offset
Name
Length
Value
Description

00h
Type
BYTE
0
BIOS Information Indicator

01h
Length
BYTE
Varies
12h + number of BIOS Characteristics Extension Bytes. If no Extension Bytes are used the Length will be 12h. For v2.1 and v2.2 implementations, the length is 13h since one extension byte is defined. For v2.3 and later implementations, the length is at least 14h since two extension bytes are defined.

02h
Handle
WORD
Varies

04h
Vendor
BYTE
STRING
String number of the BIOS Vendor’s Name

05h
BIOS Version
BYTE
STRING
String number of the BIOS Version. This is a free form string which may contain Core and OEM version information.

06h
BIOS Starting Address Segment
WORD
Varies
Segment location of BIOS starting address, e.g.0E800h. Note: The size of the runtime BIOS image can be computed by subtracting the Starting Address Segment from 10000h and multiplying the result by 16.

08h
BIOS Release Date
BYTE
STRING
String number of the BIOS release date. The date string, if supplied, is in either mm/dd/yy or mm/dd/yyyy format. If the year portion of the string is two digits, the year is assumed to be 19yy.

Note: The mm/dd/yyyy format is required for SMBIOS version 2.3 and later.

09h
BIOS ROM Size
BYTE
Varies (n)
Size (n) where 64K * (n+1) is the size of the physical device containing the BIOS, in bytes

0Ah
BIOS Characteristics
QWORD
Bit Field
Defines which functions the BIOS supports.

PCI, PCMCIA, Flash, etc. See 3.3.1.1.

12h
BIOS Characteristics Extension Bytes
Zero or more BYTEs
Bit Field
Optional space reserved for future supported functions. The number of Extension Bytes that are present is indicated by the Length in offset 1 minus 12h. See 3.3.1.2 for extensions defined for v2.1 and later implementations.

3.3.1.1 BIOS Characteristics

QWORD Bit Position
Meaning if Set

Bit 0
Reserved

Bit 1
Reserved

Bit 2
Unknown

Bit 3
BIOS Characteristics Not Supported

Bit 4
ISA is supported

Bit 5
MCA is supported

Bit 6
EISA is supported

Bit 7
PCI is supported

Bit 8
PC Card (PCMCIA) is supported

Bit 9
Plug and Play is supported

Bit 10
APM is supported

Bit 11
BIOS is Upgradeable (Flash)

Bit 12
BIOS shadowing is allowed

Bit 13
VL-VESA is supported

Bit 14
ESCD support is available

Bit 15
Boot from CD is supported

Bit 16
Selectable Boot is supported

Bit 17
BIOS ROM is socketed

Bit 18
Boot From PC Card (PCMCIA) is supported

Bit 19
EDD (Enhanced Disk Drive) Specification is supported

Bit 20
Int 13h - Japanese Floppy for NEC 9800 1.2mb (3.5”, 1k Bytes/Sector, 360 RPM) is supported

Bit 21
Int 13h - Japanese Floppy for Toshiba 1.2mb (3.5”, 360 RPM) is supported

Bit 22
Int 13h - 5.25” / 360 KB Floppy Services are supported

Bit 23
Int 13h - 5.25” /1.2MB Floppy Services are supported

Bit 24
Int 13h - 3.5” / 720 KB Floppy Services are supported

Bit 25
Int 13h - 3.5” / 2.88 MB Floppy Services are supported

Bit 26
Int 5h, Print Screen Service is supported

Bit 27
Int 9h, 8042 Keyboard services are supported

Bit 28
Int 14h, Serial Services are supported

Bit 29
Int 17h, Printer Services are supported

Bit 30
Int 10h, CGA/Mono Video Services are supported

Bit 31
NEC PC-98

Bits32:47
Reserved for BIOS Vendor

Bits 48:63
Reserved for System Vendor

3.3.1.2 BIOS Characteristics Extension Bytes
Note: All Characteristics Extension Bytes are reserved for assignment via this specification.
3.3.1.2.1 BIOS Characteristics Extension Byte 1

This information, available for SMBIOS version 2.1 and later, appears at offset 12h within the BIOS Information structure.
Byte Bit Position
Meaning if Set

Bit 0
ACPI supported

Bit 1
USB Legacy is supported

Bit 2
AGP is supported

Bit 3
I2O boot is supported

Bit 4
LS-120 boot is supported

Bit 5
ATAPI ZIP Drive boot is supported

Bit 6
1394 boot is supported

Bit 7
Smart Battery supported

3.3.1.2.2 BIOS Characteristics Extension Byte 2

This information, available for SMBIOS version 2.3 and later, appears at offset 13h within the BIOS Information structure.

Byte Bit Position
Meaning if Set

Bit 0
BIOS Boot Specification supported

Bits 1:7
Reserved for future assignment via this specification.

3.3.2 System Information (Type 1)

The information in this structure defines attributes of the overall system and is intended to be associated with the Component ID group of the system’s MIF.

Offset
Spec Version
Name
Length
Value
Description

00h
2.0+
Type
BYTE
1
Component ID Information Indicator

01h
2.0+
Length
BYTE
08h or 19h
Length dependent on version supported, 08h for 2.0 or 19h for 2.1 and later.

02h
2.0+
Handle
WORD
Varies

04h
2.0+
Manufacturer
BYTE
STRING
Number of Null terminated string

05h
2.0+
Product Name
BYTE
STRING
Number of Null terminated string

06h
2.0+
Version
BYTE
STRING
Number of Null terminated string

07h
2.0+
Serial Number
BYTE
STRING
Number of Null terminated string

08h
2.1+
UUID
16 BYTEs
Varies
Universal Unique ID number. If the value is all FFh, the ID is not currently present in the system, but is settable. If the value is all 00h, the ID is not present in the system.

18h
2.1+
Wake-up Type
BYTE
ENUM
Identifies the event that caused the system to power up. See 3.3.2.1.

3.3.2.1 System — Wake-up Type

Byte Value
Meaning

00h
Reserved

01h
Other

02h
Unknown

03h
APM Timer

04h
Modem Ring

05h
LAN Remote

06h
Power Switch

07h
PCI PME#

08h
AC Power Restored

3.3.3 Base Board Information (Type 2)

The information in this structure defines attributes of the system’s baseboard (also known as the motherboard or planar).

Offset
Name
Length
Value
Description

00h
Type
BYTE
2
Base Board Information Indicator

01h
Length
BYTE
08h

02h
Handle
WORD
Varies

04h
Manufacturer
BYTE
STRING
Number of Null terminated string

05h
Product
BYTE
STRING
Number of Null terminated string

06h
Version
BYTE
STRING
Number of Null terminated string

07h
Serial Number
BYTE
STRING
Number of Null terminated string

3.3.4 System Enclosure or Chassis (Type 3)

The information in this structure defines attributes of the system’s mechanical enclosure(s). For example, if a system included a separate enclosure for its peripheral devices, two structures would be returned: one for the main, system enclosure and the second for the peripheral device enclosure. The additions to this structure in v2.1 of this specification support the population of the DMTF|Physical Container Global Table group.

Offset
Spec Version
Name
Length
Value
Description

00h
2.0+
Type
BYTE
3
System Enclosure Indicator

01h
2.0+
Length
BYTE
Varies
09h for v2.0 implementations; 0Dh for v2.1 and later implementations which don’t include OEM-defined; 11h for v2.3 and later implementations that include OEM-defined.

02h
2.0+
Handle
WORD
Varies

04h
2.0+
Manufacturer
BYTE
STRING
Number of Null terminated string

05h
2.0+
Type
BYTE
Varies
Bit 7
Chassis lock present if 1. Otherwise, either a lock is not present or it is unknown if the enclosure has a lock.

Bits 6:0
Enumeration value, see below.

06h
2.0+
Version
BYTE
STRING
Number of Null terminated string

07h
2.0+
Serial Number
BYTE
STRING
Number of Null terminated string

08h
2.0+
Asset Tag Number
BYTE
STRING
Number of Null terminated string

09h
2.1+
Bootup State
BYTE
ENUM
Identifies the state of the enclosure when it was last booted. See 3.3.4.2 for definitions.

0Ah
2.1+
Power Supply State
BYTE
ENUM
Identifies the state of the enclosure’s power supply (or supplies) when last booted. See 3.3.4.2 for definitions.

0Bh
2.1+
Thermal State
BYTE
ENUM
Identifies the enclosure’s thermal state when last booted. See 3.3.4.2 for definitions.

0Ch
2.1+
Security Status
BYTE
ENUM
Identifies the enclosure’s physical security status when last booted. See 3.3.4.3 for definitions.

0Dh
2.3+
OEM-defined
DWORD
Varies
Contains OEM- or BIOS vendor-specific information.

3.3.4.1 System Enclosure or Chassis Types

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
 Other

02h
 Unknown

03h
 Desktop

04h
 Low Profile Desktop

05h
 Pizza Box

06h
 Mini Tower

07h
 Tower

08h
 Portable

09h
 LapTop

0Ah
 Notebook

0Bh
 Hand Held

0Ch
 Docking Station

0Dh
 All in One

0Eh
 Sub Notebook

0Fh
 Space-saving

10h
 Lunch Box

11h
 Main Server Chassis

12h
 Expansion Chassis

13h
 SubChassis

14h
 Bus Expansion Chassis

15h
 Peripheral Chassis

16h
 RAID Chassis

17h
 Rack Mount Chassis

18h
Sealed-case PC

3.3.4.2 System Enclosure or Chassis States

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
 Other

02h
 Unknown

03h
Safe

04h
Warning

05h
Critical

06h
Non-recoverable

3.3.4.3 System Enclosure or Chassis Security Status

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
 Other

02h
 Unknown

03h
None

04h
External interface locked out

05h
External interface enabled

3.3.5 Processor Information (Type 4)

The information in this structure defines the attributes of a single processor; a separate structure instance is provided for each system processor socket/slot. For example, a system with an IntelDX2™ processor would have a single structure instance while a system with an IntelSX2™ processor would have a structure to describe the main CPU and a second structure to describe the 80487 co-processor.
Note: One structure is provided for each processor instance in a system. For example, a system that supports up to two processors includes two Processor Information structures — even if only one processor is currently installed. Software that interprets the SMBIOS information can count the Processor Information structures to determine the maximum possible configuration of the system.
Offset
Spec Version
Name
Length
Value
Description

00h
2.0+
Type
BYTE
4
Processor Information Indicator

01h
2.0+
Length
BYTE
Varies
The Length is 1Ah for v2.0 implementations or 20h for v2.1 and later implementations.

02h
2.0+
Handle
WORD
Varies

04h
2.0+
Socket Designation
BYTE
STRING
String number for Reference Designation. Example string ‘J202’,0

05h
2.0+
Processor Type
BYTE
ENUM
See 3.3.5.1 on page 13

06h
2.0+
Processor Family
BYTE
ENUM
See 3.3.5.2 on page 13

07h
2.0+
Processor

Manufacturer
BYTE
STRING
String number of Processor Manufacturer

08h
2.0+
Processor ID
QWORD
Varies
Raw processor identification data. See 3.3.5.3 for details.

10h
2.0+
Processor Version
BYTE
STRING
String number describing the Processor

11h
2.0+
Voltage
BYTE
Varies
See 3.3.5.4.

12h
2.0+
External Clock
WORD
Varies
External Clock Frequency, in MHz. If the value is unknown, the field is set to 0.

14h
2.0+
Max Speed
WORD
Varies
Maximum internal processor speed, as supported by the system. 0E9h for a 233MHz processor. If the value is unknown, the field is set to 0.

16h
2.0+
Current Speed
WORD
Varies
Same format as Max Speed

18h
2.0+
Status
BYTE
Varies
Bit 7
Reserved, must be 0

Bit 6
CPU Socket Populated

1 - CPU Socket Populated

0 - CPU Socket Unpopulated

Bits 5:3
Reserved, must be zero

Bits 2:0
CPU Status

0h - Unknown

1h - CPU Enabled

2h - CPU Disabled by User via BIOS Setup

3h - CPU Disabled By BIOS (POST Error)

4h - CPU is Idle, waiting to be enabled.

5-6h - Reserved

7h - Other

19h
2.0+
Processor Upgrade
BYTE
ENUM
See 3.3.5.5

1Ah
2.1+
L1 Cache Handle
WORD
Varies
The handle of a Cache Information structure which defines the attributes of the primary (Level 1) cache for this processor. For v2.1 and v2.2 implementations, the value is 0FFFFh if the processor has no L1 cache. For v2.3 and later implementations, the value is 0FFFFh if the Cache Information structure is not provided.

1Ch
2.1+
L2 Cache Handle
WORD
Varies
The handle of a Cache Information structure which defines the attributes of the secondary (Level 2) cache for this processor. For v2.1 and v2.2 implementations, the value is 0FFFFh if the processor has no L2 cache. For v2.3 and later implementations, the value is 0FFFFh if the Cache Information structure is not provided.1

1Eh
2.1+
L3 Cache Handle
WORD
Varies
The handle of a Cache Information structure which defines the attributes of the tertiary (Level 3) cache for this processor. For v2.1 and v2.2 implementations, the value is 0FFFFh if the processor has no L3 cache. For v2.3 and later implementations, the value is 0FFFFh if the Cache Information structure is not provided.1

3.3.5.1 Processor Information - Processor Type

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
Central Processor

04h
Math Processor

05h
DSP Processor

06h
Video Processor

3.3.5.2 Processor Information - Processor Family

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
8086

04h
80286

05h
Intel386™ processor

06h
Intel486™ processor

07h
8087

08h
80287

09h
80387

0Ah
80487

0Bh
Pentium® processor Family

0Ch
Pentium® Pro processor

0Dh
Pentium® II processor

0Eh
Pentium® processor with MMX™ technology

0Fh
Celeron™ processor

10h
Pentium® II Xeon™ processor

11h
Reserved for specific Pentium® processor versions

12h
M1 Family

13h-18h
Reserved for specific M1 versions

19h
K5 Family

1Ah-1Fh
 Reserved for specific K5 versions

20h
Power PC Family

21h
Power PC 601

22h
Power PC 603

23h
Power PC 603+

24h
Power PC 604

30h
Alpha Family

40h
MIPS Family

50h
SPARC Family

60h
68040 Family

61h
68xxx

62h
68000

63h
68010

64h
68020

65h
68030

70h
Hobbit Family

80h
Weitek

90h
PA-RISC Family

A0h
V30 Family

3.3.5.3 Processor ID Field Format

The Processor ID field contains processor-specific information which describes the processor’s features.

3.3.5.3.1 X86-Class CPUs

For x86 class CPUs, the field’s format depends on the processor’s support of the CPUID instruction. If the instruction is supported, the Processor ID field contains two DWORD-formatted values. The first (offsets 08h-0Bh) is the EAX value returned by a CPUID instruction with input EAX set to 1; the second (offsets 0Ch-0Fh) is the EDX value returned by that instruction.

Otherwise, only the first two bytes of the Processor ID field are significant (all others are set to 0) and contain (in WORD-format) the contents of the DX register at CPU reset.

3.3.5.4 Processor Information – Voltage

Two forms of information can be specified by the SMBIOS in this field, dependent on the value present in bit 7 (the most-significant bit). If bit 7 is 0 (legacy mode), the remaining bits of the field represent the specific voltages that the processor socket can accept, as follows:

Bit 7
Set to 0, indicating ‘legacy’ mode for processor voltage

Bits 6:4
Reserved, must be zero

Bits 3:0
Voltage Capability. A Set bit indicates that the voltage is supported.

Bit 0 - 5V

Bit 1 - 3.3V

Bit 2 - 2.9V

Bit 3 - Reserved, must be zero.

Note: Setting of multiple bits indicates the socket is configurable

If bit 7 is set to 1, the remaining seven bits of the field are set to contain the processor’s current voltage times 10. For example, the field value for a processor voltage of 1.8 volts would be 92h = 80h + (1.8 * 10) = 80h + 18 = 80h +12h.

3.3.5.5 Processor Information - Processor Upgrade

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
Daughter Board

04h
ZIF Socket

05h
Replaceable Piggy Back

06h
None

07h
LIF Socket

08h
Slot 1

09h
Slot 2

3.3.6 Memory Controller Information (Type 5)

The information in this structure defines the attributes of the system’s memory controller(s) and the supported attributes of any memory-modules present in the sockets controlled by this controller.

Note: This structure, and its companion Memory Module Information (Type 6), are obsolete starting with version 2.1 of this specification; the Physical Memory Array (Type 16) and Memory Device (Type 17) structures should be used instead to allow proper population of the DMI 2.0 required groups. BIOS providers might choose to implement both memory description types to allow existing DMI browsers to properly display the system’s memory attributes.

Offset
Spec Version
Name
Length
Value
Description

00h
2.0+
Type
BYTE
5
Memory Controller Indicator

01h
2.0+
Length
BYTE
Varies
Computed by the BIOS as either 15 + (2 * x) for v2.0 implementations or 16 + (2 * x) for v2.1 and later implementations, where x is the value present in offset 0Eh.

02h
2.0+
Handle
WORD
Varies

04h
2.0+
Error Detecting Method
BYTE
ENUM
See 3.3.6.1

05h
2.0+
Error Correcting Capability
BYTE
Bit Field
See 3.3.6.2

06h
2.0+
Supported Interleave
BYTE
ENUM
See 3.3.6.3

07h
2.0+
Current Interleave
BYTE
ENUM
See 3.3.6.3

08h
2.0+
Maximum Memory Module Size
BYTE
Varies (n)
The size of the largest memory module supported (per slot), specified as n, where 2**n is the maximum size in MB. The maximum amount of memory supported by this controller is that value times the number of slots, as specified in offset 0Eh of this structure.

09h
2.0+
Supported Speeds
WORD
Bit Field
See 3.3.6.4 for bit-wise descriptions.

0Bh
2.0+
Supported Memory Types
WORD
Bit Field
See 3.3.7.1 on page 13 for bit-wise descriptions.

0Dh
2.0+
Memory Module Voltage
BYTE
Bit Field
This field describes the required voltages for each of the memory module sockets controlled by this controller:

Bits 7:3
Reserved, must be zero

Bit 2
2.9V

Bit 1
3.3V

Bit 0
5V

Note: Setting of multiple bits indicates the sockets are configurable

0Eh
2.0+
Number of Associated Memory Slots (x)
BYTE
Varies
Defines how many of the Memory Module Information blocks are controlled by this controller.

0Fh to 0Fh + (2*x) - 1
2.0+
Memory Module Configuration Handles
x WORDs
Varies
A list of memory information structure handles controlled by this controller. Value in offset 0Eh (x) defines the count.

0Fh + (2*x)
2.1+
Enabled Error Correcting Capabilities
BYTE
Bit Field
Identifies the error-correcting capabilities that were enabled when the structure was built. See 3.3.6.2 for bit-wise definitions.

3.3.6.1 Memory Controller Error Detecting Method

Byte Value
Meaning

01h
Other

02h
Unknown

03h
None

04h
 8-bit Parity

05h
 32-bit ECC

06h
 64-bit ECC

07h
128-bit ECC

08h
CRC

3.3.6.2 Memory Controller Error Correcting Capability

Byte Bit Position
Meaning

Bit 0
Other

Bit 1
Unknown

Bit 2
None

Bit 3
Single Bit Error Correcting

Bit 4
Double Bit Error Correcting

Bit 5
Error Scrubbing

3.3.6.3 Memory Controller Information - Interleave Support

Byte Value
Meaning

01h
Other

02h
Unknown

03h
One Way Interleave

04h
Two Way Interleave

05h
Four Way Interleave

06h
Eight Way Interleave

07h
Sixteen Way Interleave

3.3.6.4 Memory Controller Information - Memory Speeds

This bit-field describes the speed of the memory modules supported by the system.

Word Bit Position
Meaning

Bit 0
Other

Bit 1
Unknown

Bit 2
70ns

Bit 3
60ns

Bit 4
50ns

Bits 5:15
Reserved, must be zero

3.3.7 Memory Module Information (Type 6)

One Memory Module Information structure is included for each memory-module socket in the system. The structure describes the speed, type, size, and error status of each system memory module. The supported attributes of each module are described by the “owning” Memory Controller Information structure.

Note: This structure, and its companion Memory Controller Information (Type 5), are obsolete starting with version 2.1 of this specification; the Physical Memory Array (Type 16) and Memory Device (Type 17) structures should be used instead to allow proper population of the DMI 2.0 required groups. BIOS providers might choose to implement both memory description types to allow existing DMI browsers to properly display the system’s memory attributes.

Offset
Name
Length
Value
Description

00h
Type
BYTE
6
Memory Module Configuration Indicator

01h
Length
BYTE
0Ch

02h
Handle
WORD
Varies

04h
Socket Designation
BYTE
STRING
String Number for Reference Designation. Example ‘J202’,0

05h
Bank Connections
BYTE
Varies
Each nibble indicates a bank (RAS#) connection, 0xF means no connection. Example: If banks 1 & 3 (RAS# 1 & 3) were connected to a SIMM socket the byte for that socket would be 13h. If only bank 2 (RAS 2) were connected the byte for that socket would be 2Fh.

06h
Current Speed
BYTE
Varies
The speed of the memory module, in ns (e.g. 70d for a 70ns module). If the speed is unknown, the field is set to 0.

07h
Current Memory Type
WORD
Bit Field
See 3.3.7.1

09h
Installed Size
BYTE
Varies
See 3.3.7.2

0Ah
Enabled Size
BYTE
Varies
See 3.3.7.2

0Bh
Error Status
BYTE
Varies
Bits 7:3
Reserved, set to 0’s

Bit 2 If set, the Error Status information should be obtained from the event log; bits 1and 0 are reserved.

Bit 1
Correctable errors received for the module, if set. This bit will only be reset during a system reset.

Bit 0
Uncorrectable errors received for the module, if set. All or a portion of the module has been disabled. This bit is only reset on power-on.

3.3.7.1 Memory Module Information - Memory Types

This bit-field describes the physical characteristics of the memory modules which are supported by (and currently installed in) the system.

Word Bit Position
Meaning

Bit 0
Other

Bit 1
Unknown

Bit 2
Standard

Bit 3
Fast Page Mode

Bit 4
EDO

Bit 5
Parity

Bit 6
ECC

Bit 7
SIMM

Bit 8
DIMM

Bit 9
Burst EDO

Bit 10
SDRAM

Bits 11:15
Reserved, must be zero

3.3.7.2 Memory Module Information - Memory Size

The Size fields of the Memory Module Configuration Information structure define the amount of memory currently installed (and enabled) in a memory-module connector.

The Installed Size fields identify the size of the memory module which is installed in the socket, as determined by reading and correlating the module’s presence-detect information. If the system does not support presence-detect mechanisms, the Installed Size field is set to 7Dh to indicate that the installed size is not determinable. The Enabled Size field identifies the amount of memory currently enabled for the system’s use from the module. If a module is known to be installed in a connector, but all memory in the module has been disabled due to error, the Enabled Size field is set to 7Eh.

Byte Bit Range
Meaning

Bits 0:6
Size (n), where 2**n is the size in MB with three special-case values:

7Dh
Not determinable (Installed Size only)

7Eh
Module is installed, but no memory has been enabled

7Fh
Not installed

Bit 7
Defines whether the memory module has a single- (0) or double-bank (1) connection.

3.3.7.3 Memory Subsystem Example

A system utilizes a memory controller which supports up to 4-32MB 5V 70ns parity SIMMs. The memory module sockets are used in pairs A1/A2 and B1/B2 to provide a 64-bit data path to the CPU. No mechanism is provided by the system to read the SIMM IDs. RAS-0 and -1 are connected to the front- and back-size banks of the SIMMs in the A1/A2 sockets and RAS-2 and -3 are similarly connected to the B1/B2 sockets. The current installation is an 8MB SIMM in sockets A1 and A2, 16MB total.

db
5

; Memory Controller Information

db
23

; Length = 15 + 2*4

dw
14

; Memory Controller Handle

db
4

; 8-bit parity error detection

db
00000100b
; No error correction provided

db
03h

; 1-way interleave supported

db
03h

; 1-way interleave currently used

db
5

; Maximum memory-module size supported is 32MB (2**5)

dw
00000100b
; Only 70ns SIMMs supported

dw
00A4h

; Standard, parity SIMMs supported

db
00000001b
; 5V provided to each socket

db
4

; 4 memory-module sockets supported

dw
15

; 1st Memory Module Handle

dw
16

dw
17

dw
18

; 4th ...
dw
0000h

; End-of-structure termination

db
6

; Memory Module Information

db
0Ch

dw
15

; Handle

db
1

; Reference Designation string #1

db
01h

; Socket connected to RAS-0 and RAS-1

db
00000010b
; Current speed is Unknown, since can’t read SIMM IDs

db
00000100b
; Upgrade speed is 70ns, since that’s all that’s

; supported

dw
00A4h

; Current SIMM must be standard parity

db
7Dh

; Installed size indeterminable (no SIMM IDs)

db
83h

; Enabled size is double-bank 8MB (2**3)

db
0

; No errors

db
“A1”,0

; String#1: Reference Designator

db
0

; End-of-strings

db
6

; Memory Module Information

db
0Ch

dw
16

; Handle

db
1

; Reference Designation string #1

db
01h

; Socket connected to RAS-0 and RAS-1

db
0

; Current speed is Unknown, since can’t read SIMM IDs

dw
00A4h

; Current SIMM must be standard parity

db
7Dh

; Installed size indeterminable (no SIMM IDs)

db
83h

; Enabled size is double-bank 8MB (2**3)

db
0

; No errors

db
“A2”,0

; String#1: Reference Designator

db
0

; End-of-strings

db
6

; Memory Module Information

db
0Ch

dw
17

; Handle

db
1

; Reference Designation string #1

db
23h

; Socket connected to RAS-2 and RAS-3

db
0

; Current speed is Unknown, since can’t read SIMM IDs

dw
0001h

; Nothing appears to be installed (Other)

db
7Dh

; Installed size indeterminable (no SIMM IDs)

db
7Fh

; Enabled size is 0 (nothing installed)

db
0

; No errors

db
“B1”,0

; String#1: Reference Designator

db
0

; End-of-strings

db
6

; Memory Module Information

db
0Ch

dw
18

; Handle

db
1

; Reference Designation string #1

db
23h

; Socket connected to RAS-2 and RAS-3

db
0

; Current speed is Unknown, since can’t read SIMM IDs

dw
0001h

; Nothing appears to be installed (Other)

db
7Dh

; Installed size indeterminable (no SIMM IDs)

db
7Fh

; Enabled size is 0 (nothing installed)

db
0

; No errors

db
“B2”,0

; String#1: Reference Designator

db
0

; End-of-strings

3.3.8 Cache Information (Type 7)

The information in this structure defines the attributes of CPU cache device in the system. One structure is specified for each such device, whether the device is internal to or external to the CPU module. Cache modules can be associated with a processor structure in one or two ways depending on the SMBIOS version, see 3.3.5 Processor Information (Type 4) on page 13 and 3.3.15 Group Associations (Type 14) on page 13 for more information.

Offset
Spec Version
Name
Length
Value
Description

00h
2.0+
Type
BYTE
7
Cache Information Indicator

01h
2.0+
Length
BYTE
Varies
The value is 0Fh for v2.0 implementations, or 13h for v2.1 implementations.

02h
2.0+
Handle
WORD
Varies

04h
2.0+
Socket Designation
BYTE
STRING
String Number for Reference Designation

Example: “CACHE1”, 0

05h
2.0+
Cache Configuration
WORD
Varies
Bits 15:10 Reserved, must be zero

Bits 9:8
Operational Mode

00b Write Through

01b Write Back

10b Varies with Memory Address

11b Unknown

Bit 7
 Enabled/Disabled (at boot time)

1b Enabled

0b Disabled

Bits 6:5
Location, relative to the CPU module:

00b Internal

01b External

10b Reserved

11b Unknown
Bit 4
 Reserved, must be zero

Bit 3
Cache Socketed

1b Socketed

0b Not Socketed

Bits 2:0
Cache Level - 1 through 8, e.g. an L1 cache would use value 000b and an L3 cache would use 010b.

07h
2.0+
Maximum Cache Size
WORD
Varies
Maximum size that can be installed

Bit 15
Granularity

0 - 1K granularity

1 - 64K granularity

Bits 14:0 Max size in given granularity

09h
2.0+
Installed Size
WORD
Varies
Same format as Max Cache Size field, set to 0 if no cache is installed.

0Bh
2.0+
Supported SRAM Type
WORD
Bit Field
See 3.3.8.1

0Dh
2.0+
Current SRAM Type
WORD
Bit Field
See 3.3.8.1

0Fh
2.1+
Cache Speed
BYTE
Varies
The cache module speed, in nanoseconds. The value is 0 if the speed is unknown.

10h
2.1+
Error Correction Type
BYTE
ENUM
The error-correction scheme supported by this cache component, see 3.3.8.2.

11h
2.1+
System Cache Type
BYTE
ENUM
The logical type of cache, see 3.3.8.3.

12h
2.1+
Associativity
BYTE
ENUM
The associativity of the cache, see 3.3.8.4.

3.3.8.1 Cache Information - SRAM Type

Word Bit Position
Meaning

Bit 0
Other

Bit 1
Unknown

Bit 2
Non-Burst

Bit 3
Burst

Bit 4
Pipeline Burst

Bit 5
Synchronous

Bit 6
Asynchronous

Bits 7:15
Reserved, must be zero

3.3.8.2 Cache Information — Error Correction Type

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
None

04h
Parity

05h
Single-bit ECC

06h
Multi-bit ECC

3.3.8.3 Cache Information — System Cache Type

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
Instruction

04h
Data

05h
Unified

3.3.8.4 Cache Information — Associativity

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
Direct Mapped

04h
2-way Set-Associative

05h
4-way Set-Associative

06h
Fully Associative

3.3.9 Port Connector Information (Type 8)

The information in this structure defines the attributes of a system port connector, e.g. parallel, serial, keyboard, mouse ports. The port’s type and connector information are provided. One structure is present for each port provided by the system.

Offset
Name
Length
Value
Description

00h
Type
BYTE
8
Connector Information Indicator

01h
Length
BYTE
9h

02h
Handle
WORD
Varies

04h
Internal Reference Designator

BYTE
STRING
String number for Internal Reference Designator, i.e. internal to the system enclosure, e.g. ‘J101’, 0

05h
Internal

Connector Type
BYTE
ENUM
Internal Connector type. See 3.3.9.2

06h
External Reference Designator
BYTE
STRING
String number for the External Reference Designation external to the system enclosure, e.g. ‘COM A’, 0

07h
External

Connector Type
BYTE
ENUM
External Connector type. See 3.3.9.2

08h
Port Type
BYTE
ENUM
Describes the function of the port. See 3.3.9.3

3.3.9.1 Port Information Example

The following structure shows an example where a DB-9 Pin Male connector on the System Backpanel (COM A) is connected to the System Board via a 9 Pin Dual Inline connector (J101).

db
8

; Indicates Connector Type

db
9h

; Length

dw
?

; Reserved for handle

db
01h

; String 1 - Internal Reference Designation

db
18h

; 9 Pin Dual Inline

db
02h

; String 2 - External Reference Designation

db
08h

; DB-9 Pin Male
db
09h

; 16550A Compatible

db
‘J101’,0
; Internal reference

db
‘COM A’,0
; External reference

db
0

If an External Connector is not used (as in the case of a CD-ROM Sound connector) then the External Reference Designator and the External Connector type should be set to zero. If an Internal Connector is not used (as in the case of a soldered on Parallel Port connector which extends outside of the chassis) then the Internal Reference Designation and Connector Type should be set to zero.

3.3.9.2 Port Information - Connector Types

Byte Value
Meaning

00h
None

01h
Centronics

02h
Mini Centronics

03h
Proprietary

04h
DB-25 pin male

05h
DB-25 pin female

06h
DB-15 pin male

07h
DB-15 pin female

08h
DB-9 pin male

09h
DB-9 pin female

0Ah
RJ-11

0Bh
RJ-45

0Ch
50 Pin MiniSCSI

0Dh
Mini-DIN

0Eh
Micro-DIN

0Fh
PS/2

10h
Infrared

11h
HP-HIL

12h
Access Bus (USB)

13h
SSA SCSI

14h
Circular DIN-8 male

15h
Circular DIN-8 female

16h
On Board IDE

17h
On Board Floppy

18h
9 Pin Dual Inline (pin 10 cut)

19h
25 Pin Dual Inline (pin 26 cut)

1Ah
50 Pin Dual Inline

1Bh
68 Pin Dual Inline

1Ch
On Board Sound Input from CD-ROM

1Dh
Mini-Centronics Type-14

1Eh
Mini-Centronics Type-26

1Fh
Mini-jack (headphones)

20h
BNC

21h
1394

A0h
PC-98

A1h
PC-98Hireso

A2h
PC-H98

A3h
PC-98Note

A4h
PC-98Full

FFh
Other - Use Reference Designator Strings to supply information.

3.3.9.3 Port Types

Byte Value
Meaning

00h
None

01h
Parallel Port XT/AT Compatible

02h
Parallel Port PS/2

03h
Parallel Port ECP

04h
Parallel Port EPP

05h
Parallel Port ECP/EPP

06h
Serial Port XT/AT Compatible

07h
Serial Port 16450 Compatible

08h
Serial Port 16550 Compatible

09h
Serial Port 16550A Compatible

0Ah
SCSI Port

0Bh
MIDI Port

0Ch
Joy Stick Port

0Dh
Keyboard Port

0Eh
Mouse Port

0Fh
SSA SCSI

10h
USB

11h
FireWire (IEEE P1394)

12h
PCMCIA Type II

13h
PCMCIA Type II

14h
PCMCIA Type III

15h
Cardbus

16h
Access Bus Port

17h
SCSI II

18h
SCSI Wide

19h
PC-98

1Ah
PC-98-Hireso

1Bh
PC-H98

1Ch
Video Port

1Dh
Audio Port

1Eh
Modem Port

1Fh
Network Port

A0h
8251 Compatible

A1h
8251 FIFO Compatible

0FFh
Other

3.3.10 System Slots (Type 9)

The information in this structure defines the attributes of a system slot. One structure is provided for each slot in the system.

Offset
Spec Version
Name
Length
Value
Description

00h
2.0+
Type
BYTE
9
System Slot Structure Indicator

01h
2.0+
Length
BYTE
Varies
0Ch for v2.0 implementations; 0Dh for v2.1 and later.

02h
2.0+
Handle
WORD
Varies

04h
2.0+
Slot Designation
BYTE
STRING
String number for reference designation e.g. ‘PCI-1’,0

05h
2.0+
Slot Type
BYTE
ENUM
See 3.3.10.1

06h
2.0+
Slot Data Bus Width
BYTE
ENUM
See 3.3.10.2

07h
2.0+
Current Usage
BYTE
ENUM
See 3.3.10.3

08h
2.0+
Slot Length
BYTE
ENUM
See 3.3.10.4

09h
2.0+
Slot ID
WORD
Varies
See 3.3.10.5

0Bh
2.0+
Slot Characteristics 1
BYTE
Bit Field
See 3.3.10.6

0Ch
2.1+
Slot Characteristics 2
BYTE
Bit Field
See 3.3.10.7

3.3.10.1 System Slots - Slot Type

Byte Value
Meaning

01h
Other

02h
Unknown

03h
ISA

04h
MCA

05h
EISA

06h
PCI

07h
PC Card (PCMCIA)

08h
VL-VESA

09h
Proprietary

0Ah
Processor Card Slot

0Bh
Proprietary Memory Card Slot

0Ch
I/O Riser Card Slot

0Dh
NuBus

0Eh
PCI - 66MHz Capable

0Fh
AGP

10h
AGP 2X

11h
AGP 4X

A0h
PC-98/C20

A1h
PC-98/C24

A2h
PC-98/E

A3h
PC-98/Local Bus

A4h
PC-98/Card

3.3.10.2 System Slots - Slot Data Bus Width

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
8 bit

04h
16 bit

05h
32 bit

06h
64 bit

07h
128 bit

3.3.10.3 System Slots - Current Usage

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
 Other

02h
 Unknown

03h
 Available

04h
 In use

3.3.10.4 System Slots - Slot Length

Byte Value
Meaning

01h
Other

02h
Unknown

03h
Short Length

04h
Long Length

3.3.10.5 System Slots — Slot ID

The Slot ID field of the System Slot structure provides a mechanism to correlate the physical attributes of the slot to its logical access method (which varies based on the Slot Type field). The Slot ID field has meaning only for the slot types described below:

Slot Type
Slot ID Field Meaning

MCA
Identifies the logical Micro Channel slot number, in the range 1 to 15, in offset 09h. Offset 0Ah is set to 0.

EISA
Identifies the logical EISA slot number, in the range 1 to 15, in offset 09h. Offset 0Ah is set to 0.

PCI/AGP
Identifies the value present in the Slot Number field of the PCI Interrupt Routing table entry that is associated with this slot, in offset 09h — offset 0Ah is set to 0. The table is returned by the “Get PCI Interrupt Routing Options” PCI BIOS function call and provided directly in the PCI IRQ Routing Table Specification ($PIRQ). Software can determine the PCI bus number and device associated with the slot by matching the "Slot ID" to an entry in the routing-table ... and ultimately determine what device is present in that slot.

Note: This definition also applies to the 66MHz-capable PCI slots.

PCMCIA
Identifies the Adapter Number (offset 09h) and Socket Number (offset 0Ah) to be passed to PCMCIA Socket Services to identify this slot.

3.3.10.6 Slot Characteristics 1

BYTE

Bit Position
Meaning if Set

Bit 0
Characteristics Unknown

Bit 1
Provides 5.0 Volts

Bit 2
Provides 3.3 Volts

Bit 3
Slot’s opening is shared with another slot, e.g. PCI/EISA shared slot.

Bit 4
PC Card slot supports PC Card-16

Bit 5
PC Card slot supports CardBus

Bit 6
PC Card slot supports Zoom Video

Bit 7
PC Card slot supports Modem Ring Resume

3.3.10.7 Slot Characteristics 2

BYTE

Bit Position
Meaning if Set

Bit 0
PCI slot supports Power Management Enable (PME#) signal

Bit 1
Slot supports hot-plug devices

Bits 2:7
Reserved, set to 0

3.3.11 On Board Devices Information (Type 10)

The information in this structure defines the attributes of devices which are onboard (soldered onto) a system element, usually the baseboard. In general, an entry in this table implies that the BIOS has some level of control over the enabling of the associated device for use by the system.

Important Note: Since this structure was originally defined with the Length implicitly defining the number of devices present, no further fields can be added to this structure without adversely affecting existing software’s ability to properly parse the data. Thus, if additional fields are required for this structure type a brand new structure must be defined to add a device count field, carry over the existing fields, and add the new information.

Offset
Name
Length
Value
Description

00h
Type
BYTE
10
On Board Devices Information Indicator

01h
Length
BYTE
Varies
Computed by the BIOS as 4 + 2 * (Number of Devices). The user of this structure determines the number of devices as (Length - 4) / 2.

02h
Handle
WORD
Varies

4+2*(n-1)
Devicen Type, n ranges from 1 to Number of Devices
BYTE
Varies
Bit 7
Devicen Status

1 - Device Enabled

0 - Device Disabled

Bits 6:0
Type of Device (See 3.3.11.1)

5+2*(n-1)
Description String
BYTE
STRING
String number of device description

Note: There may be a single structure instance containing the information for all onboard devices or there may be a unique structure instance for each onboard device.

3.3.11.1 Onboard Device Types

Byte Value
Meaning

01h
Other

02h
Unknown

03h
Video

04h
SCSI Controller

05h
Ethernet

06h
Token Ring

07h
Sound

3.3.12 OEM Strings (Type 11)

Offset
Name
Length
Value
Description

00h
Type
BYTE
11
OEM Strings Indicator

01h
Length
BYTE
5h

02h
Handle
WORD
Varies

04h
Count
BYTE
Varies
Number of strings

This structure contains free form strings defined by the OEM. Examples of this are: Part Numbers for Reference Documents for the system, contact information for the manufacturer, etc.

3.3.13 System Configuration Options (Type 12)

Offset
Name
Length
Value
Description

00h
Type
BYTE
12
Configuration Information Indicator

01h
Length
BYTE
5h

02h
Handle
WORD
Varies

04h
Count
BYTE
Varies
Number of strings

This structure contains information required to configure the base board’s Jumpers and Switches.

Examples of this are:
“JP2: 1-2 Cache Size is 256K, 2-3 Cache Size is 512K”

“SW1-1: Close to Disable On Board Video”

3.3.14 BIOS Language Information (Type 13)

The information in this structure defines the installable language attributes of the BIOS.

Offset
Spec Version
Name
Length
Value
Description

00h
2.0+
Type
BYTE
13
Language Information Indicator

01h
2.0+
Length
BYTE
16h

02h
2.0+
Handle
WORD
Varies

04h
2.0+
Installable Languages
BYTE
Varies
Number of languages available. Each available language will have a description string. This field contains the number of strings that follow the formatted area of the structure.

05h
2.1+
Flags
BYTE
Bit Field
Bits 7:1
Reserved

Bit 0
If set to 1, the Current Language strings use the abbreviated format. Otherwise, the strings use the long format. See below for details.

06h
2.0+
Reserved
15 BYTEs
0
Reserved for future use

015h
2.0+
Current Language
BYTE
STRING
String number (one-based) of the currently installed language.

The strings describing the languages follow the Current Language byte. The format of the strings depends on the value present in bit 0 of the byte at offset 05h in the structure.

If the bit is 0, each language string is in the form “ISO 639 Language Name | ISO 3166 Territory Name | Encoding Method”. See the Example 1 below.

If the bit is 1, each language string consists of the 2-character ISO 639 Language Name directly followed by the 2-character ISO 3166 Territory Name. See Example 2 below.

Note: Refer to the Desktop Management Interface Specification, V1.0, Appendix A (ISO 639) and Appendix B (ISO 3166) for additional information.

Example 1: BIOS Language Information (Long Format)

db
13

; language information

db
16h

; length

dw
??

; handle

db
3

; three languages available

db
0

; use long-format for language strings

db
15 dup (0)

; reserved

db
2

; current language is French Canadian

db
‘en|US|iso8859-1’,0

; language 1 is US English

db
‘fr|CA|iso8859-1’,0

; language 2 is French Canadian

db
‘ja|JP|unicode’,0

; language 3 is Japanese

db
0

; Structure termination

Example 2: BIOS Language Information (Abbreviated Format)

db
13

; language information

db
16h

; length

dw
??

; handle

db
3

; three languages available

db
01h

; use abbreviated format for language strings

db
15 dup (0)

; reserved

db
2

; current language is French Canadian

db
‘enUS’,0

; language 1 is US English

db
‘frCA’,0

; language 2 is French Canadian

db
‘jaJP’,0

; language 3 is Japanese

db
0

; Structure termination

3.3.15 Group Associations (Type 14)

Important Note: Since this structure was originally defined with the Length implicitly defining the number of items present, no further fields can be added to this structure without adversely affecting existing software’s ability to properly parse the data. Thus, if additional fields are required for this structure type a brand new structure must be defined to add an item count field, carry over the existing fields, and add the new information.

Offset
Name
Length
Value
Description

00h
Type
BYTE
14
Group Associations Indicator

01h
Length
BYTE
Varies
Computed by the BIOS as 5 + (3 bytes for each item in the group). The user of this structure determines the number of items as (Length - 5) / 3.

02h
Handle
WORD
Varies

04h
Group Name
BYTE
STRING
String number of string describing the group

05h
Item Type
BYTE
Varies
Item (Structure) Type of this member

06h
Item Handle
WORD
Varies
Handle corresponding to this structure

The Group Associations structure is provided for OEMs who want to specify the arrangement or hierarchy of certain components (including other Group Associations) within the system. For example, you can use the Group Associations structure to indicate that two CPU’s share a common external cache system. These structures might look as follows:

First Group Association Structure:

db
14
; Group Association structure

db
11
; Length

dw
28h
; Handle

db
01h
; String Number (First String)

db
04
; CPU Structure

dw
08h
; CPU Structure’s Handle

db
07
; Cache Structure

dw
09h
; Cache Structure’s Handle

db
‘Primary CPU Module’, 0

db
0

Second Group Association Structure:

db
14
; Group Association structure

db
11
; Length

dw
29h
; Handle

db
01h
; String Number (First String)

db
04
; CPU Structure

dw
0Ah
; CPU Structure’s Handle

db
07
; Cache Structure

dw
09h
; Cache Structure’s Handle

db
‘Secondary CPU Module’, 0

db
0

In the examples above, CPU structures 08h and 0Ah are associated with the same cache, 09h. This relationship could also be specified as a single group:

db
14
; Group Association structure

db
14
; Length (5 + 3 * 3)

dw
28h
; Structure handle for Group Association

db
1
; String Number (First string)

db
4
; 1st CPU

dw
08h
; CPU structure handle

db
4
; 2nd CPU

dw
0Ah
; CPU structure handle

db
7
; Shared cache

dw
09h
; Cache structure handle

db
‘Dual-Processor CPU Complex’, 0

db
0

3.3.16 System Event Log (Type 15)

The presence of this structure within the SMBIOS data returned for a system indicates that the system supports an event log. An event log is a fixed-length area within a non-volatile storage element, starting with a fixed-length (and vendor-specific) header record, followed by one or more variable-length log records. See 3.3.16.4 Event Log Organization on page 13 for more information. Refer also to 2.2.5 Function 54h – SMBIOS Control on page 13 for interfaces that can be used to control the event-log.

An application can implement event-log change notification by periodically reading the System Event Log structure (via its assigned handle) looking for a change in the Log Change Token. This token uniquely identifies the last time the event log was updated. When it sees the token changed, the application can retrieve the entire event log and determine the changes since the last time it read the event log.

Offset
Spec Version
Name
Length
Value
Description

00h
2.0+
Type
BYTE
15
Event Log Type Indicator

01h
2.0+
Length
BYTE
Var
Length of the structure, including the Type and Length fields. The Length is 14h for v2.0 implementations or computed by the BIOS as 17h+(x*y) for v2.1 and higher implementations — where x is the value present at offset 15h and y is the value present at offset 16h.

02h
2.0+
Handle
WORD
Var
The handle, or instance number, associated with the structure.

04h
2.0+
Log Area Length
WORD
Var
The length, in bytes, of the overall event log area, from the first byte of header to the last byte of data.

06h
2.0+
Log Header Start Offset
WORD
Var
Defines the starting offset (or index) within the nonvolatile storage of the event-log’s header, from the Access Method Address. For single-byte indexed I/O accesses, the most-significant byte of the start offset is set to 00h.

08h
2.0+
Log Data Start Offset
WORD
Var
Defines the starting offset (or index) within the nonvolatile storage of the event-log’s first data byte, from the Access Method Address. For single-byte indexed I/O accesses, the most-significant byte of the start offset is set to 00h.

Note: The data directly follows any header information. Therefore, the header length can be determined by subtracting the Header Start Offset from the Data Start Offset.

0Ah
2.0+
Access Method
BYTE
Var
Defines the Location and Method used by higher-level software to access the log area, one of:

00h
Indexed I/O: 1 8-bit index port, 1 8-bit data port. The Access Method Address field contains the 16-bit I/O addresses for the index and data ports. See 3.3.16.2.1 for usage details.

01h
Indexed I/O: 2 8-bit index ports, 1 8-bit data port. The Access Method Address field contains the 16-bit I/O address for the index and data ports. See 3.3.16.2.2 for usage details.

02h
Indexed I/O: 1 16-bit index port, 1 8-bit data port. The Access Method Address field contains the 16-bit I/O address for the index and data ports. See 3.3.16.2.3 for usage details.

03h
Memory-mapped physical 32-bit address. The Access Method Address field contains the 4-byte (Intel DWORD format) starting physical address.

04h
Available via General-Purpose NonVolatile Data functions, see 2.2.6 on page 13 for more information.

The Access Method Address field contains the 2-byte (Intel WORD format) GPNV handle.

05h-7Fh Available for future assignment via this specification

80h-FFh BIOS Vendor/OEM-specific

0Bh
2.0+
Log Status

BYTE
Var
This bit-field describes the current status of the system event-log:

Bits 7:2
Reserved, set to 0’s

Bit 1
Log area full, if 1

Bit 0
Log area valid, if 1

0Ch
2.0+
Log Change3 Token
DWORD
Var
Unique token that is reassigned every time the event log changes. Can be used to determine if additional events have occurred since the last time the log was read.

10h
2.0+
Access Method Address
DWORD
Var
The address associated with the access method; the data present depends on the Access Method field value. The area’s format can be described by the following 1-byte-packed ‘C’ union:

union

 {

 struct

 {

 short IndexAddr;

 short DataAddr;

 } IO;

 long PhysicalAddr32;

 short GPNVHandle;

} AccessMethodAddress;

14h
2.1+
Log Header Format
BYTE
ENUM
Identifies the format of the log header area, see 3.3.16.5 for details.

15h
2.1+
Number of Supported Log Type Descriptors (x)
BYTE
Varies
Number of supported event log type descriptors that follow. If the value is 0, the list that starts at offset 17h is not present.

16h
2.1+
Length of each Log Type Descriptor (y)
BYTE
2
Identifies the number of bytes associated with each type entry in the list below. The value is currently “hard-coded” as 2, since each entry consists of two bytes. This field’s presence allows future additions to the type list. Software that interprets the following list should not assume a list entry’s length.

17h to 17h+(x*y))-1
2.1+
List of Supported Event Log Type Descriptors
Varies
Var
Contains a list of Event Log Type Descriptors (see 3.3.16.1), so long as the value specified in offset 15h is non-zero.

3.3.16.1 Supported Event Log Type Descriptors

Each entry consists of a 1-byte type field and a 1-byte data-format descriptor, as defined by the following table. The presence of an entry identifies that the Log Type is supported by the system and the format of any variable data which accompanies the first bytes of the log’s variable data — a specific log record might have more variable data than specified by its Variable Data Format Type.

Offset
Name
Length
Value
Description

00h
Log Type
BYTE
ENUM
See 3.3.16.6.1 on page 13 for list.

01h
Variable Data Format Type
BYTE
ENUM
See 3.3.16.6.2 on page 13 for list

3.3.16.2 Indexed I/O Access Method

This section contains examples (in x86 assembly language) which detail the code required to access the “indexed I/O” event-log information.

3.3.16.2.1 1 8-bit Index, 1 8-bit Data (00h)

To access the event-log, the caller selects 1 of 256 unique data bytes by

1) Writing the byte data-selection value (index) to the IndexAddr I/O address

2) Reading or writing the byte data value to (or from) the DataAddr I/O address

mov
dx, IndexAddr
;Value from event-log structure

mov
al, WhichLoc

;Identify offset to be accessed

out
dx, al

mov
dx, DataAddr

;Value from event-log structure

in
al, dx

; Read current value

3.3.16.2.2 2 8-bit Index, 1 8-bit Data (01h)

To access the event-log, the caller selects 1 of 65536 unique data bytes by

1) Writing the least-significant byte data-selection value (index) to the IndexAddr I/O address

2) Writing the most-significant byte data-selection value (index) to the (IndexAddr+1) I/O address

3) Reading or writing the byte data value to (or from) the DataAddr I/O address

mov
dx, IndexAddr
;Value from event-log structure

mov
ax, WhichLoc

;Identify offset to be accessed

out
dx, al

;Select LSB offset

inc
dx

xchg
ah, al

out
dx, al

;Select MSB offset

mov
dx, DataAddr

;Value from event-log structure

in
al, dx

;Read current value
3.3.16.2.3 1 16-bit Index, 1 8-bit Data (02h)

To access the event-log, the caller selects 1 of 65536 unique data bytes by

1) Writing the word data-selection value (index) to the IndexAddr I/O address

2) Reading or writing the byte data value to (or from) the DataAddr I/O address

mov
dx, IndexAddr
;Value from event-log structure

mov
ax, WhichLoc

;Identify offset to be accessed

out
dx, ax

mov
dx, DataAddr

;Value from event-log structure

in
al, dx

;Read current value
3.3.16.3 Access Method Address — DWORD Layout
Access Type
BYTE 3
BYTE 2
BYTE 1
BYTE 0

00:02 — Indexed I/O
Data MSB
Data LSB
Index MSB
Index LSB

03- Absolute Address
Byte 3
Byte 2
Byte 1
Byte 0

04 - Use GPNV
0
0
Handle MSB
Handle LSB

3.3.16.4 Event Log Organization

The event log is organized as an optional (and implementation-specific) fixed-length header, followed by one or more variable-length event records, as illustrated below. From one implementation to the next, the format of the log header and the size of the overall log area might change; all other required fields of the event log area will be consistent across all systems.

Log Header (Optional)

Type
Length
Year
Month
Day
Hour
Minute
Second
Log Variable Data

Reqd
Reqd
Reqd
Reqd
Reqd
Reqd
Reqd
Reqd
Optional

3.3.16.5 Log Header Format

The following table contains the byte enumeration values (available for SMBIOS v2.1 and later) which identify the standard formats of the event log headers.

Byte Value
Meaning
See …

00h
No header, e.g. the header is 0 bytes in length.

01h
Type 1 log header
3.3.16.5.1

02h-7Fh
Available for future assignment via this specification

80h-FFh
BIOS Vendor or OEM-specific format

3.3.16.5.1 Log Header Type 1 Format

The type 1 event log header consists of the following fields:

Offset
Name
Length
Value
Description

00h
OEM Reserved
5 BYTES
Varies
Reserved area for OEM customization, not assignable by this specification.

05h
Multiple Event Time Window
BYTE
Varies
The number of minutes which must pass between duplicate log entries which utilize a multiple-event counter, specified in BCD. The value ranges from 00h to 99h to represent 0 to 99 minutes.

See 3.3.16.6.3 Multiple-Event Counter on page 13 for usage details.

06h
Multiple Event Count Increment
BYTE
Varies
The number of occurrences of a duplicate event which must pass before the multiple-event counter associated with the log entry is updated, specified as a numeric value in the range 1 to 255 (the value 0 is reserved).

See 3.3.16.6.3 Multiple-Event Counter on page 13 for usage details.

07h
Pre-boot Event Log Reset — CMOS Address
BYTE
Varies
Identifies the CMOS RAM address (in the range 10h - FFh) associated with the Pre-boot Event Log Reset; the value is 00h if the feature is not supported. See below for usage details.

08h
Pre-boot Event Log Reset — CMOS Bit Index
BYTE
Varies
Identifies the bit within the above CMOS RAM location which is set to indicate that the log should be cleared. The value is specified in the range 0 to 7, where 0 specifies the LSB and 7 specified the MSB. See below for usage details.

09h
CMOS Checksum — Starting Offset
BYTE
Varies
Identifies the CMOS RAM address associated with the start of the area which is to be checksummed, if the value is non-0. If the value is 0, the CMOS Address field lies outside of a checksummed region in CMOS. See below for usage details.

0Ah
CMOS Checksum — Byte Count
BYTE
Varies
Identifies the number of consecutive CMOS RAM addresses, starting at the Starting Offset, which participate in the CMOS Checksum region associated with the pre-boot event log reset. See below for usage details.

0Bh
CMOS Checksum — Checksum Offset
BYTE
Varies
Identifies the CMOS RAM address associated with the start of two consecutive bytes into which the calculated checksum value is stored. See below for usage details.

0Ch - 0Eh
Reserved
3 BYTEs
000000h
Available for future assignment via this specification.

0Fh
Header Revision
BYTE
01h
Identifies the version of Type 1 header implemented.

The Type 1 Log Header also provides pre-boot event log reset support. Application software can set a system-specific location of CMOS RAM memory (accessible via I/O ports 70h and 71h) to cause the event log to be cleared by the BIOS on the next reboot of the system.

To perform the field setting, application software follows these steps, so long as the Pre-boot Event Log Reset — CMOS Address field of the header is non-zero:

· Read the address specified from CMOS RAM set the bit specified by the CMOS Bit Index field to 1. Rewrite the CMOS RAM address with the updated data.

· If the CMOS Checksum — Starting Offset field is non-zero, recalculate the CMOS RAM checksum value for the range starting at the Starting Offset field for Byte Count bytes into a 2-byte value. Subtract that value from 0 to create the checksum value for the range and store that 2-byte value into the CMOS RAM; the least-significant byte of the value is stored at the CMOS RAM Checksum Offset and the most-significant byte of the value is stored at (Checksum Offset)+1.

3.3.16.6 Log Record Format

Each log record consists of a required fixed-length record header, followed by (optional) additional data which is defined by the event type. The fixed-length log record header is present as the first 8-bytes of each log record, regardless of event type, and consists of:

Offset
Name
Format
Description

00h
Event Type
BYTE
Specifies the “Type” of event noted in an event-log entry as defined in 3.3.16.6.1

01h
Length
BYTE
Specifies the byte length of the event record, including the record’s Type and Length fields. The most-significant bit of the field specifies whether (0) or not (1) the record has been read. The implication of the record having been read is that the information in the log record has been processed by a higher software layer.

02h-07h
Date/Time Fields
BYTE
These fields contain the BCD representation of the date and time (as read from CMOS) of the occurrence of the event. The information is present in year, month, day, hour, minute, second order.
Note: The century portion of the two-digit year is implied as ‘19’ for year values in the range 80h to 99h and ‘20’ for year values in the range 00h to 79h.

08h+
Log Variable Data
Var
This field contains the (optional) event-specific additional status information.

3.3.16.6.1 Event Log Types

Value
Description

00h
Reserved.

01h
Single-bit ECC memory error

02h
Multi-bit ECC memory error

03h
Parity memory error

04h
Bus time-out

05h
I/O Channel Check

06h
Software NMI

07h
POST Memory Resize

08h
POST Error

09h
PCI Parity Error

0Ah
PCI System Error

0Bh
CPU Failure

0Ch
EISA FailSafe Timer time-out

0Dh
Correctable memory log disabled

0Eh
Logging disabled for a specific Event Type – too many errors of the same type received in a short amount of time.

0Fh
Reserved

10h
System Limit Exceeded (e.g. voltage or temperature threshold exceeded).

11h
Asynchronous hardware timer expired and issued a system reset.

12h
System configuration information

13h
Hard-disk information

14h
System reconfigured

15h
Uncorrectable CPU-complex error

16h
Log Area Reset/Cleared

17h
System boot. If implemented, this log entry is guaranteed to be the first one written on any system boot.

18h-7Fh
Unused, available for assignment by this specification.

80h-FEh
Available for system- and OEM-specific assignments.

FFh
End-of-log. When an application searches through the event-log records, the end of the log is identified when a log record with this type is found.

3.3.16.6.2 Event Log Variable Data Format Types

The Variable Data Format Type, specified in the Event Log structure’s Supported Event Type fields, identifies the standard-format that application software can apply to the first n bytes of the associated Log Type’s variable data. Additional, OEM-specific, data might follow in the log’s variable data field.

Value
Name
Description

00h
None
No standard format data is available; the first byte of the variable data (if present) contains OEM-specific unformatted information.

01h
Handle
The first WORD of the variable data contains the handle of the SMBIOS structure associated with the hardware element which failed.

02h
Multiple-Event
The first DWORD of the variable data contains a multiple-event counter (see 3.3.16.6.3 for details).

03h
Multiple-Event Handle
The first WORD of the variable data contains the handle of the SMBIOS structure associated with the hardware element which failed; it is followed by a DWORD containing a multiple-event counter (see 3.3.16.6.3 for details).

04h
POST Results Bitmap
The first 2 DWORDs of the variable data contain the POST Results Bitmap, as described in 3.3.16.6.3.1 on page 13.

05h
System Management Type
The first DWORD of the variable data contains a value which identifies a system-management condition. See 3.3.16.6.3.2on page 13 for the enumerated values.

06h
Multiple-Event System Management Type
The first DWORD of the variable data contains a value which identifies a system-management condition (see 3.3.16.6.3.2 on page 13 for the enumerated values). This DWORD is directly followed by a DWORD which contains a multiple-event counter (see 3.3.16.6.3 for details).

07h-7Fh
Unused
Unused, available for assignment by this specification.

80h-FFh
OEM assigned
Available for system- and OEM-specific assignments.

3.3.16.6.3 Multiple-Event Counter

Some system events can be persistent; once they occur, it is possible to quickly fill the log with redundant multiple logs. The Multiple Event Count Increment (MECI) and Multiple Event Time Window (METW) values can be used to reduce the occurrence of these multiple logs while providing multiple event counts.

Note: These values are normally specified within the event log header, see 3.3.16.5.1 Log Header Type 1 Format on page 13 for an example; if the values aren’t specified in the header, the application software can assume that the MECI value is 1 and the METW value is 60 (minutes).

The multiple-event counter is a DWORD (32-bit) value which tracks the number of logs of the same type which have occurred within METW minutes. The counter value is initialized (in the log entry) to FFFFFFFFh, implying that only a single event of that type has been detected, and the internal BIOS counter
 specific to that log type is reset to 0. When the BIOS receives the next event of that type, it increments its internal counter and checks to see what recording of the error is to be performed:

1. A new log entry is written … and the internal BIOS counter reset to 0, if the date/time of the original log entry is outside of METW minutes.

2. No recording … (other than the internal counter increment) if the log’s current multiple-event counter is 00000000h or if the internal BIOS counter is less than MECI.

3. The next non-zero bit of the multiple-event counter is set to 0 … otherwise.

3.3.16.6.3.1 POST Results Bitmap

This variable data type, when present, is expected to be associated with the POST Error (08h) event log type and identifies that one or more error types have occurred. The bitmap consists of two DWORD values, described in the table below. Any bit within the DWORD pair that is specified as Reserved is set to 0 within the log data and is available for assignment via this specification. A set bit (‘1’b) at a DWORD bit position implies that the error associated with that position has occurred.

Bit Position
First DWORD
Second DWORD

0
Channel 2 Timer error
Normally 0; available for OEM assignment

1
Master PIC (8259 #1) error
Normally 0; available for OEM assignment

2
Slave PIC (8259 #2) error
Normally 0; available for OEM assignment

3
CMOS Battery Failure
Normally 0; available for OEM assignment

4
CMOS System Options Not Set
Normally 0; available for OEM assignment

5
CMOS Checksum Error
Normally 0; available for OEM assignment

6
CMOS Configuration Error
Normally 0; available for OEM assignment

7
Mouse and Keyboard Swapped
PCI Memory Conflict

8
Keyboard Locked
PCI I/O Conflict

9
Keyboard Not Functional
PCI IRQ Conflict

10
Keyboard Controller Not Functional
PNP Memory Conflict

11
CMOS Memory Size Different
PNP 32 bit Memory Conflict

12
Memory Decreased in Size
PNP I/O Conflict

13
Cache Memory Error
PNP IRQ Conflict

14
Floppy Drive 0 Error
PNP DMA Conflict

15
Floppy Drive 1 Error
Bad PNP Serial ID Checksum

16
Floppy Controller Failure
Bad PNP Resource Data Checksum

17
Number of ATA Drives Reduced Error
Static Resource Conflict

18
CMOS Time Not Set
NVRAM Checksum Error, NVRAM Cleared

19
DDC Monitor Configuration Change
System Board Device Resource Conflict

20
Reserved, set to 0
Primary Output Device Not Found

21
Reserved, set to 0
Primary Input Device Not Found

22
Reserved, set to 0
Primary Boot Device Not Found

23
Reserved, set to 0
NVRAM Cleared By Jumper

24
Second DWORD has valid data
NVRAM Data Invalid, NVRAM Cleared

25
Reserved, set to 0
FDC Resource Conflict

26
Reserved, set to 0
Primary ATA Controller Resource Conflict

27
Reserved, set to 0
Secondary ATA Controller Resource Conflict

28
Normally 0; available for OEM assignment
Parallel Port Resource Conflict

29
Normally 0; available for OEM assignment
Serial Port 1 Resource Conflict

30
Normally 0; available for OEM assignment
Serial Port 2 Resource Conflict

31
Normally 0; available for OEM assignment
Audio Resource Conflict

3.3.16.6.3.2 System Management Types

The following table defines the system management types present in event log record’s variable data. In general, each type is associated with a management event that occurred within the system.

Value
Name

00000000h
+2.5V Out of range, #1

00000001h
+2.5V Out of range, #2

00000002h
+3.3V Out of range

00000003h
+5V Out of range

00000004h
-5V Out of range

00000005h
+12V Out of range

00000006h
-12V Out of range

00000007h - 0000000Fh
Reserved for future out-of-range voltage levels, assigned via this specification

00000010h
System board temperature out of range

00000011h
Processor #1 temperature out of range

00000012h
Processor #2 temperature out of range

00000013h
Processor #3 temperature out of range

00000014h
Processor #4 temperature out of range

00000015h - 0000001Fh
Reserved for future out-of-range temperatures, assigned via this specification

00000020h - 00000027h
Fan n (n = 0 to 7) Out of range

00000028h - 0000002Fh
Reserved for future assignment via this specification

00000030h
Chassis secure switch activated

00000031h - 0000FFFFh
Reserved for future assignment via this specification

0001xxxxh
A system-management probe or cooling device is out-of-range. The xxxx portion of the value contains the handle of the SMBIOS structure associated with the errant device.

00020000h - 7FFFFFFFh
Reserved for future assignment via this specification

80000000h - FFFFFFFFh
OEM assigned

3.3.17 Physical Memory Array (Type 16)

This structure supports the population of the DMTF|Physical Memory Array group, as defined in the DMTF’s MASTER.MIF.
Note: The DMTF’s System Standard Groups Definition contains examples of this implementation. Refer to the section titled Enhanced Physical Memory.
Offset
Spec Version
Name
Length
Value
Description

00h
2.1+
Type
BYTE
16
Physical Memory Array type

01h
2.1+
Length
BYTE
0Fh
Length of the structure.

02h
2.1+
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
2.1+
Location
BYTE
ENUM
The physical location of the Memory Array, whether on the system board or an add-in board. See 3.3.17.1 for definitions.

05h
2.1+
Use
BYTE
ENUM
Identifies the function for which the array is used. See 3.3.17.2 for definitions.

06h
2.1+
Memory Error Correction
BYTE
ENUM
The primary hardware error correction or detection method supported by this memory array. See 3.3.17.3 for definitions.

07h
2.1+
Maximum Capacity
DWORD
Varies
The maximum memory capacity, in kilobytes, for this array. If the capacity is unknown, this field contains 8000 0000h.

0Bh
2.1+
Memory Error Information Handle
WORD
Varies
The handle, or instance number, associated with any error which was previously detected for the array. if the system does not provide the error information structure, the field contains FFFEh; otherwise, the field contains either FFFFh (if no error was detected) or the handle of the error-information structure. See also 3.3.19 32-bit Memory Error Information (Type 18) on page 13 and 3.3.34 64-bit Memory Error Information (Type 33) on page 13.

0Dh
2.1+
Number of Memory Devices
WORD
Varies
The number of slots or sockets available for Memory Devices in this array. This value represents the number of Memory Device structures which comprise this Memory Array. Each Memory Device has a reference to the ‘owning’ Memory Array.

3.3.17.1 Memory Array — Location

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
System board or motherboard

04h
ISA add-on card

05h
EISA add-on card

06h
PCI add-on card

07h
MCA add-on card

08h
PCMCIA add-on card

09h
Proprietary add-on card

0Ah
NuBus

A0h
PC-98/C20 add-on card

A1h
PC-98/C24 add-on card

A2h
PC-98/E add-on card

A3h
PC-98/Local bus add-on card

3.3.17.2 Memory Array — Use

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
System memory

04h
Video memory

05h
Flash memory

06h
Non-volatile RAM

07h
Cache memory

3.3.17.3 Memory Array — Error Correction Types

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
None

04h
Parity

05h
Single-bit ECC

06h
Multi-bit ECC

07h
CRC

3.3.18 Memory Device (Type 17)

This structure supports the population of the DMTF|Memory Device group, as defined in the DMTF’s MASTER.MIF.

Note: If a system includes memory-device sockets, the SMBIOS implementation includes a Memory Device structure instance for each slot whether or not the socket is currently populated.

Offset
Spec Version
Name
Length
Value
Description

00h
2.1+
Type
BYTE
17
Memory Device type

01h
2.1+
Length
BYTE
Varies
Length of the structure, either 15h or 17h depending on whether the Speed of the device is included.

02h
2.1+
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
2.1+
Memory Array Handle
WORD
Varies
The handle, or instance number, associated with the Memory Array to which this device belongs.

06h
2.1+
Memory Error Information Handle
WORD
Varies
The handle, or instance number, associated with any error which was previously detected for the device. if the system does not provide the error information structure, the field contains FFFEh; otherwise, the field contains either FFFFh (if no error was detected) or the handle of the error-information structure. See 3.3.19 32-bit Memory Error Information (Type 18) on page 13 and 3.3.34 64-bit Memory Error Information (Type 33) on page 13.

08h
2.1+
Total Width
WORD
Varies
The total width, in bits, of this memory device, including any check or error-correction bits. If there are no error-correction bits, this value should be equal to Data Width. If the width is unknown, the field is set to FFFFh.

0Ah
2.1+
Data Width
WORD
Varies
The data width, in bits, of this memory device. A Data Width of 0 and a Total Width of 8 indicates that the device is being used solely to provide 8 error-correction bits. If the width is unknown, the field is set to FFFFh.

0Ch
2.1+
Size
WORD
Varies
The size of the memory device. If the value is 0, no memory device is installed in the socket; if the size is unknown, the field value is FFFFh.

The granularity in which the value is specified depends on the setting of the most-significant bit (bit 15). If the bit is 0, the value is specified in megabyte units; if the bit is 1, the value is specified in kilobyte units. For example, the value 8100h identifies a 256KB memory device and 0100h identifies a 256MB memory device.

0Eh
2.1+
Form Factor
BYTE
ENUM
The implementation form factor for this memory device. See 3.3.18.1 for definitions.

0Fh
2.1+
Device Set
BYTE
Varies
Identifies when the Memory Device is one of a set of Memory Devices that must be populated with all devices of the same type and size, and the set to which this device belongs. A value of 0 indicates that the device is not part of a set; a value of FFh indicates that the attribute is unknown.

Note: A Device Set number must be unique within the context of the Memory Array containing this Memory Device.

10h
2.1+
Device Locator
BYTE
STRING
The string number of the string that identifies the physically-labeled socket or board position where the memory device is located, e.g. “SIMM 3”.

11h
2.1+
Bank Locator
BYTE
STRING
The string number of the string that identifies the physically-labeled bank where the memory device is located, e.g. “Bank 0” or “A”.

12h
2.1+
Memory Type
BYTE
ENUM
The type of memory used in this device, see 3.3.18.2 for definitions.

13h
2.1+
Type Detail
WORD
Bit Field
Additional detail on the memory device type, see 3.3.18.3 for definitions.

15h
2.3+
Speed
WORD
Varies
Identifies the speed of the device, in megahertz (MHz). If the value is 0, the speed is unknown.

Note: n MHz = (1000 / n) nanoseconds (ns)

3.3.18.1 Memory Device — Form Factor

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
SIMM

04h
SIP

05h
Chip

06h
DIP

07h
ZIP

08h
Proprietary Card

09h
DIMM

0Ah
TSOP

0Bh
Row of chips

0Ch
RIMM

0Dh
SODIMM

3.3.18.2 Memory Device — Type

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
DRAM

04h
EDRAM

05h
VRAM

06h
SRAM

07h
RAM

08h
ROM

09h
FLASH

0Ah
EEPROM

0Bh
FEPROM

0Ch
EPROM

0Dh
CDRAM

0Eh
3DRAM

0Fh
SDRAM

10h
SGRAM

3.3.18.3 Memory Device — Type Detail

Important Note: Bit-field values are controlled by the DMTF, not this specification.

Note: Multiple bits are set if more than one attribute applies.

Word Bit Position
Meaning

Bit 0
Reserved, set to 0.

Bit 1
Other

Bit 2
Unknown

Bit 3
Fast-paged

Bit 4
Static column

Bit 5
Pseudo-static

Bit 6
RAMBUS

Bit 7
Synchronous

Bit 8
CMOS

Bit 9
EDO

Bit 10
Window DRAM

Bit 11
Cache DRAM

Bit 12
Non-volatile

Bits 13:15
Reserved, set to 0.

3.3.19 32-bit Memory Error Information (Type 18)

This structure supports the population of the DMTF|Physical Memory Array and DMTF|Memory Device groups, as defined in the DMTF’s MASTER.MIF. The Last Error Update field, present in those groups, is not supplied in this structure since that field’s attribute is known at the system-management application layer, not the BIOS.

Offset
Spec Version
Name
Length
Value
Description

00h
2.1+
Type
BYTE
18
32-bit Memory Error Information type

01h
2.1+
Length
BYTE
17h
Length of the structure.

02h
2.1+
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
2.1+
Error Type
BYTE
ENUM
The type of error that is associated with the current status reported for the memory array or device. See 3.3.19.1 for definitions..

05h
2.1+
Error Granularity
BYTE
ENUM
Identifies the granularity, e.g. device vs. Partition, to which the error can be resolved. See 3.3.19.2 for definitions.

06h
2.1+
Error Operation
BYTE
ENUM
The memory access operation that caused the error. See 3.3.19.3 for definitions.

07h
2.1+
Vendor Syndrome
DWORD
Varies
The vendor-specific ECC syndrome or CRC data associated with the erroneous access. If the value is unknown, this field contains 0000 0000h.

0Bh
2.1+
Memory Array Error Address
DWORD
Varies
The 32-bit physical address of the error based on the addressing of the bus to which the memory array is connected. If the address is unknown, this field contains 8000 0000h.

0Fh
2.1+
Device Error Address
DWORD
Varies
The 32-bit physical address of the error relative to the start of the failing memory device, in bytes. If the address is unknown, this field contains 8000 0000h.

13h
2.1+
Error Resolution
DWORD
Varies
The range, in bytes, within which the error can be determined, when an error address is given. If the range is unknown, this field contains 8000 0000h.

3.3.19.1 Memory Error — Error Type

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
OK

04h
Bad read

05h
Parity error

06h
Single-bit error

07h
Double-bit error

08h
Multi-bit error

09h
Nibble error

0Ah
Checksum error

0Bh
CRC error

0Ch
Corrected single-bit error

0Dh
Corrected error

0Eh
Uncorrectable error

3.3.19.2 Memory Error — Error Granularity

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
Device level

04h
Memory partition level

3.3.19.3 Memory Error — Error Operation

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
Read

04h
Write

05h
Partial write

3.3.20 Memory Array Mapped Address (Type 19)

This structure supports the population of the DMTF|Memory Array Mapped Addresses group, as defined in the DMTF’s MASTER.MIF. One structure is present for each contiguous address range described.

See also 3.3.17 Physical Memory Array (Type 16) on page 13, 3.3.18 Memory Device (Type 17) on page 13, and 3.3.21 Memory Device Mapped Address (Type 20) on page 13.

Offset
Spec Version
Name
Length
Value
Description

00h
2.1+
Type
BYTE
19
Memory Array Mapped Address indicator

01h
2.1+
Length
BYTE
0Fh
Length of the structure.

02h
2.1+
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
2.1+
Starting Address
DWORD
Varies
The physical address, in kilobytes, of a range of memory mapped to the specified Physical Memory Array.

08h
2.1+
Ending Address
DWORD
Varies
The physical ending address of the last kilobyte of a range of addresses mapped to the specified Physical Memory Array.

0Ch
2.1+
Memory Array Handle
WORD
Varies
The handle, or instance number, associated with the Physical Memory Array to which this address range is mapped. Multiple address ranges can be mapped to a single Physical Memory Array.

0Eh
2.1+
Partition Width
BYTE
Varies
Identifies the number of Memory Devices that form a single row of memory for the address partition defined by this structure.

3.3.21 Memory Device Mapped Address (Type 20)

This structure supports the population of the DMTF|Memory Device Mapped Addresses group, as defined in the DMTF’s MASTER.MIF. One structure is present for each contiguous address range described.

See also 3.3.17 Physical Memory Array (Type 16) on page 13, 3.3.18 Memory Device (Type 17) on page 13, and 3.3.20 Memory Array Mapped Address (Type 19) on page 13.

Offset
Spec Version
Name
Length
Value
Description

00h
2.1+
Type
BYTE
20
Memory Device Mapped Address indicator

01h
2.1+
Length
BYTE
13h
Length of the structure.

02h
2.1+
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
2.1+
Starting Address
DWORD
Varies
The physical address, in kilobytes, of a range of memory mapped to the referenced Memory Device.

08h
2.1+
Ending Address
DWORD
Varies
The physical ending address of the last kilobyte of a range of addresses mapped to the referenced Memory Device.

0Ch
2.1+
Memory Device Handle
WORD
Varies
The handle, or instance number, associated with the Memory Device structure to which this address range is mapped. Multiple address ranges can be mapped to a single Memory Device.

0Eh
2.1+
Memory Array Mapped Address Handle
WORD
Varies
The handle, or instance number, associated with the Memory Array Mapped Address structure to which this device address range is mapped. Multiple address ranges can be mapped to a single Memory Array Mapped Address.

10h
2.1+
Partition Row Position
BYTE
Varies
Identifies the position of the referenced Memory Device in a row of the address partition. For example, if two 8-bit devices form a 16-bit row, this field’s value will be either 1 or 2.

The value 0 is reserved; if the position is unknown, the field contains FFh.

11h
2.1+
Interleave Position
BYTE
Varies
The position of the referenced Memory Device in an interleave. The value 0 indicates non-interleaved, 1 indicates first interleave postion, 2 the second, and so on. If the position is unknown, the field contains FFh.

For example: in a 2:1 interleave, the value 1 indicates the device in the ‘even’ position; in a 4:1 interleave, the value 1 indicates the first of four possible positions.

12h
2.1+
Interleaved Data Depth
BYTE
Varies
The maximum number of consecutive rows from the referenced Memory Device that are accessed in a single interleaved transfer. If the device is not part of an interleave, the field contains 0; if the interleave configuration is unknown, the value is FFh.

For example, if a device transfers two rows each time it is read, its Interleaved Data Depth is set to 2. If that device is 2:1 interleaved and in Interleave Position 1, the rows mapped to that device are 1, 2, 5, 6, 9, 10, etc.

3.3.22 Built-in Pointing Device (Type 21)

This structure supports the population of the DMTF|Pointing Device group, as defined in the DMTF Mobile Supplement to Standard Groups, v1.0 and describes the attributes of the built-in pointing device for the system — the presence of this structure does not imply that the built-in pointing device is active for the system’s use!

Offset
Spec Version
Name
Length
Value
Description

00h
2.1+
Type
BYTE
21
Built-in Pointing Device indicator

01h
2.1+
Length
BYTE
07h
Length of the structure.

02h
2.1+
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
2.1+
Type
BYTE
ENUM
The type of pointing device, see 3.3.22.1.

05h
2.1+
Interface
BYTE
ENUM
The interface type for the pointing device, see 3.3.22.2.

06h
2.1+
Number of Buttons
BYTE
Varies
The number of buttons on the pointing device. If the device has three buttons, the field value is 03h.

3.3.22.1 Pointing Device — Type

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
Mouse

04h
Track Ball

05h
Track Point

06h
Glide Point

07h
Touch Pad

3.3.22.2 Pointing Device — Interface

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
Serial

04h
PS/2

05h
Infrared

06h
HP-HIL

07h
Bus mouse

08h
ADB (Apple Desktop Bus)

A0h
Bus mouse DB-9

A1h
Bus mouse micro-DIN

A2h
USB

3.3.23 Portable Battery (Type 22)

This structure supports the population of the DMTF|Portable Battery group, as defined in the DMTF Mobile Supplement to Standard Groups, v1.0 and describes the attributes of the portable battery(s) for the system. The structure contains the static attributes for the group. Each structure describes a single battery pack’s attributes.

Offset
Spec Version
Name
Length
Value
Description

00h
2.1+
Type
BYTE
22
Portable Battery indicator

01h
2.1+
Length
BYTE
1Ah
Length of the structure.

02h
2.1+
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
2.1+
Location
BYTE
STRING
The number of the string that identifies the location of the battery, e.g. “in the back, on the left-hand side.”

05h
2.1+
Manufacturer
BYTE
STRING
The number of the string that names the company that manufactured the battery.

06h
2.1+
Manufacture Date
BYTE
STRING
The number of the string that identifies the date on which the battery was manufactured. V2.2+ implementations which use a Smart Battery will set this field to 0 (no string) to indicate that the SBDS Manufacture Date field contains the information.

07h
2.1+
Serial Number
BYTE
STRING
The number of the string that contains the serial number for the battery. V2.2+ implementations that use a Smart Battery will set this field to 0 (no string) to indicate that the SBDS Serial Number field contains the information.

08h
2.1+
Device Name
BYTE
STRING
The number of the string that names the battery device, e.g. “DR-36”.

09h
2.1+
Device Chemistry
BYTE
ENUM
Identifies the battery chemistry, see 3.3.23.1. V2.2+ implementations that use a Smart Battery will set this field to 02h (Unknown) to indicate that the SBDS Device Chemistry field contains the information.

0Ah
2.1+
Design Capacity
WORD
Varies
The design capacity of the battery in mWatt-hours. If the value is unknown, the field contains 0. For v2.2+ implementations, this value is multiplied by the Design Capacity Multiplier to produce the actual value.

0Ch
2.1+
Design Voltage
WORD
Varies
The design voltage of the battery, in mVolts. If the value is unknown, the field contains 0.

0Eh
2.1+
SBDS Version Number
BYTE
STRING
The number of the string that contains the Smart Battery Data Specification version number supported by this battery. If the battery does not support the function, no string is supplied.

0Fh
2.1+
Maximum Error in Battery Data
BYTE
Varies
The maximum error (as a percentage in the range 0 to 100) in the Watt-hour data reported by the battery, indicating an upper bound on how much additional energy the battery might have above the energy it reports having. If the value is unknown, the field contains FFh.

10h
2.2+
SBDS Serial Number
WORD
Varies
The 16-bit value that identifies the battery’s serial number. This value, when combined with the Manufacturer, Device Name, and Manufacture Date will uniquely identify the battery. The Serial Number field must be set to 0 (no string) for this field to be valid.

12h
2.2+
SBDS Manufacture Date
WORD
Varies
The date the cell pack was manufactured, in packed format:

Bits 15:9
Year, biased by 1980, in the range 0 to 127.

Bits 8:5
Month, in the range 1 to 12.

Bits 4:0
Date, in the range 1 to 31.

For example, 01 February 2000 would be identified as 0010 1000 0100 0001b (0x2841). The Manufacture Date field must be set to 0 (no string) to for this field to be valid.

14h
2.2+
SBDS Device Chemistry
BYTE
STRING
The number of the string that identifies the battery chemistry, e.g. “PbAc”. The Device Chemistry field must be set to 02h (Unknown) for this field to be valid.

15h
2.2+
Design Capacity Multiplier
BYTE
Varies
The multiplication factor of the Design Capacity value and assures that the mWatt hours value does not overflow for SBDS implementations. The multiplier default is 1, SBDS implementations use the value 10 to correspond to the data as returned from the SBDS Function 18h.

16h
2.2+
OEM-specific
DWORD
Varies
Contains OEM- or BIOS vendor-specific information.

3.3.23.1 Portable Battery — Device Chemistry

Important Note: Enumerated values are controlled by the DMTF, not this specification.

Byte Value
Meaning

01h
Other

02h
Unknown

03h
Lead Acid

04h
Nickel Cadmium

05h
Nickel metal hydride

06h
Lithium-ion

07h
Zinc air

08h
Lithium Polymer

3.3.24 System Reset (Type 23)

This structure supports the population of the DMTF|System Reset group, as defined in the DMTF’s MASTER.MIF and describes whether Automatic System Reset functions enabled (Status). If the system has a watchdog Timer and the timer is not reset (Timer Reset) before the Interval elapses, an automatic system reset will occur. The system will re-boot according to the Boot Option. This function may repeat until the Limit is reached, at which time the system will re-boot according to the Boot Option at Limit.

Note: This structure type was added for specification v2.2.

Offset
Name
Length
Value
Description

00h
Type
BYTE
23
System Reset indicator

01h
Length
BYTE
0Dh
Length of the structure.

02h
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
Capabilities
BYTE
Bit-field
Identifies the system reset capabilities for the system.

Bits 7:6
Reserved for future assignment via this specification, set to 00b.

Bit 5
System contains a watchdog timer, either True (1) or False (0).

Bits 4:3
Boot Option on Limit. Identifies the system action to be taken when the Reset Limit is reached, one of:

00b
Reserved, do not use.

01b
Operating system

10b
System utilities

11b
Do not reboot

Bits 2:1
Boot Option. Indicates the action to be taken following a watchdog reset, one of:

00b
Reserved, do not use.

01b
Operating system

10b
System utilities

11b
Do not reboot

Bit 0
Status. Identifies whether (1) or not (0) the system reset is enabled by the user.

05h
Reset Count
WORD
Varies
The number of automatic system resets since the last intentional reset. A value of 0FFFFh indicates unknown.

07h
Reset Limit
WORD
Varies
The number of consecutive times the system reset will be attempted. A value of 0FFFFh indicates unknown.

09h
Timer Interval
WORD
Varies
The number of minutes to use for the watchdog timer. If the timer is not reset within this interval, the system reset timeout will begin. A value of 0FFFFh indicates unknown.

0Bh
Timeout
WORD
Varies
Identifies the number of minutes before the reboot is initiated. It is used after a system power cycle, system reset (local or remote), and automatic system reset. A value of 0FFFFh indicates unknown.

3.3.25 Hardware Security (Type 24)

This structure supports the population of the DMTF|Hardware Security group, as defined in the DMTF’s MASTER.MIF and describes the system-wide hardware security settings.

Note: This structure type was added for specification v2.2.

Offset
Name
Length
Value
Description

00h
Type
BYTE
24
Hardware Security indicator

01h
Length
BYTE
05h
Length of the structure.

02h
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
Hardware Security Settings
BYTE
Bit-field
Identifies the password and reset status for the system:

Bits 7:6

Power-on Password Status, one of:

00b
Disabled

01b
Enabled

10b
Not Implemented

11b
Unknown

Bits 5:4

Keyboard Password Status, one of:

00b
Disabled

01b
Enabled

10b
Not Implemented

11b
Unknown

Bits 3:2

Administrator Password Status, one
of:

00b
Disabled

01b
Enabled

10b
Not Implemented

11b
Unknown

Bits 1:0

Front Panel Reset Status, one of:

00b
Disabled

01b
Enabled

10b
Not Implemented

11b
Unknown

3.3.26 System Power Controls (Type 25)

This structure supports the population of the DMTF|System Power Controls group, as defined in the DMTF’s MASTER.MIF and describes the attributes for controlling the main power supply to the system. Software that interprets this structure uses the month, day, hour, minute, and second values to determine the number of seconds until the next power-on of the system. The presence of this structure implies that a timed power-on facility is available for the system.

Note: This structure type was added for specification v2.2.

Offset
Name
Length
Value
Description

00h
Type
BYTE
25
System Power Controls indicator

01h
Length
BYTE
09h
Length of the structure.

02h
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
Next Scheduled Power-on Month
BYTE
Varies
Contains the BCD value of the month on which the next scheduled power-on is to occur, in the range 01h to 12h. See 3.3.26.1.

05h
Next Scheduled Power-on Day-of-month
BYTE
Varies
Contains the BCD value of the day-of-month on which the next scheduled power-on is to occur, in the range 01h to 31h. See 3.3.26.1.

06h
Next Scheduled Power-on Hour
BYTE
Varies
Contains the BCD value of the hour on which the next scheduled power-on is to occur, in the range 00h to 23h. See 3.3.26.1.

07h
Next Scheduled Power-on Minute
BYTE
Varies
Contains the BCD value of the minute on which the next scheduled power-on is to occur, in the range 00h to 59h. See 3.3.26.1.

08h
Next Scheduled Power-on Second
BYTE
Varies
Contains the BCD value of the second on which the next scheduled power-on is to occur, in the range 00h to 59h. See 3.3.26.1.

3.3.26.1 System Power Controls — Calculating the Next Scheduled Power-on Time

The DMTF System Power Controls group contains a Next Scheduled Power-on Time, specified as the number of seconds until the next scheduled power-on of the system. Management software uses the date and time information specified in the associated SMBIOS structure to calculate the total number of seconds.

Any date or time field in the structure whose value is outside of the field’s specified range does not contribute to the total-seconds count. For example, if the Month field contains the value 0xFF the next power-on is scheduled to fall within the next month, perhaps on a specific day-of-month and time.

3.3.27 Voltage Probe (Type 26)

This structure supports the population of the DMTF|Voltage Probe group, as defined in the DMTF’s MASTER.MIF and describes the attributes for a voltage probe in the system. Each structure describes a single voltage probe.

Note: This structure type was added for specification v2.2.

Offset
Name
Length
Value
Description

00h
Type
BYTE
26
Voltage Probe indicator

01h
Length
BYTE
Varies
Length of the structure, at least 14h.

02h
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
Description
BYTE
STRING
The number of the string that contains additional descriptive information about the probe or its location.

05h
Location and Status
BYTE
Bit-field
Defines the probe’s physical location and status of the voltage monitored by this voltage probe. See 3.3.27.1.

06h
Maximum Value
WORD
Varies
The maximum voltage level readable by this probe, in millivolts. If the value is unknown, the field is set to 0x8000.

08h
Minimum Value
WORD
Varies
The minimum voltage level readable by this probe, in millivolts. If the value is unknown, the field is set to 0x8000.

0Ah
Resolution
WORD
Varies
The resolution for the probe’s reading, in tenths of millivolts. If the value is unknown, the field is set to 0x8000.

0Ch
Tolerance
WORD
Varies
The tolerance for reading from this probe, in plus/minus millivolts. If the value is unknown, the field is set to 0x8000.

0Eh
Accuracy
WORD
Varies
The accuracy for reading from this probe, in plus/minus 1/100th of a percent. If the value is unknown, the field is set to 0x8000.

10h
OEM-defined
DWORD
Varies
Contains OEM- or BIOS vendor-specific information.

14h
Nominal Value
WORD
Varies
The nominal value for the probe’s reading in millivolts. If the value is unknown, the field is set to 0x8000. This field is present in the structure only if the structure’s Length is larger than 14h.

3.3.27.1 Voltage Probe — Location and Status

Important Note: Each of the bit-field values map to enumerated values that are controlled by the DMTF, not this specification.

Bit Range
Field Name
Value
Meaning

7:5
Status
001.....
Other

010.....
Unknown

011.....
OK

100.....
Non-critical

101.....
Critical

110.....
Non-recoverable

4:0
Location
...00001
Other

...00010
Unknown

...00011
Processor

...00100
Disk

...00101
Peripheral Bay

...00110
System Management Module

...00111
Motherboard

...01000
Memory Module

...01001
Processor Module

...01010
Power Unit

...01011
Add-in Card

3.3.28 Cooling Device (Type 27)

This structure supports the population of the DMTF|Cooling Device group, as defined in the DMTF’s MASTER.MIF and describes the attributes for a cooling device in the system. Each structure describes a single cooling device.

Note: This structure type was added for specification v2.2.

Offset
Name
Length
Value
Description

00h
Type
BYTE
27
Cooling Device indicator

01h
Length
BYTE
Varies
Length of the structure, at least 0Ch.

02h
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
Temperature Probe Handle
WORD
Varies
The handle, or instance number, of the temperature probe (see 3.3.29 Temperature Probe (Type 28) on page 13) monitoring this cooling device. A value of 0xFFFF indicates that no probe is provided.

06h
Device Type and Status
BYTE
Bit-field
Identifies the cooling device type and the status of this cooling device, see 3.3.28.1.

07h
Cooling Unit Group
BYTE
Varies
Identifies the cooling unit group to which this cooling device is associated. Multiple cooling devices in the same cooling unit implies a redundant configuration. The value is 00h if the cooling device is not a member of a redundant cooling unit, non-zero values imply redundancy and that at least one other cooling device will be enumerated with the same value.

08h
OEM-defined
DWORD
Varies
Contains OEM- or BIOS vendor-specific information.

0Ch
Nominal Speed
WORD
Varies
The nominal value for the cooling device’s rotational speed, in revolutions-per-minute (rpm). If the value is unknown or the cooling device is non-rotating, the field is set to 0x8000. This field is present in the structure only if the structure’s Length is larger than 0Ch.

3.3.28.1 Cooling Device —Device Type and Status

Important Note: Each of the bit-field values map to enumerated values that are controlled by the DMTF, not this specification.

Bit Range
Field Name
Value
Meaning

7:5
Status
001.....
Other

010.....
Unknown

011.....
OK

100.....
Non-critical

101.....
Critical

110.....
Non-recoverable

4:0
Device Type
...00001
Other

...00010
Unknown

...00011
Fan

...00100
Centrifugal Blower

...00101
Chip Fan

...00110
Cabinet Fan

...00111
Power Supply Fan

...01000
Heat Pipe

...01001
Integrated Refrigeration

...10100
Active Cooling

...10101
Passive Cooling

3.3.29 Temperature Probe (Type 28)

This structure supports the population of the DMTF|Temperature Probe group, as defined in the DMTF’s MASTER.MIF and describes the attributes for a temperature probe in the system. Each structure describes a single temperature probe.

Note: This structure type was added for specification v2.2.

Offset
Name
Length
Value
Description

00h
Type
BYTE
28
Temperature Probe indicator

01h
Length
BYTE
Varies
Length of the structure, at least 14h.

02h
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
Description
BYTE
STRING
The number of the string that contains additional descriptive information about the probe or its location.

05h
Location and Status
BYTE
Bit-field
Defines the probe’s physical location and the status of the temperature monitored by this temperature probe. See 3.3.29.1.

06h
Maximum Value
WORD
Varies
The maximum temperature readable by this probe, in 1/10th degrees C. If the value is unknown, the field is set to 0x8000.

08h
Minimum Value
WORD
Varies
The minimum temperature readable by this probe, in 1/10th degrees C. If the value is unknown, the field is set to 0x8000.

0Ah
Resolution
WORD
Varies
The resolution for the probe’s reading, in 1/1000th degrees C. If the value is unknown, the field is set to 0x8000.

0Ch
Tolerance
WORD
Varies
The tolerance for reading from this probe, in plus/minus 1/10th degrees C. If the value is unknown, the field is set to 0x8000.

0Eh
Accuracy
WORD
Varies
The accuracy for reading from this probe, in plus/minus 1/100th of a percent. If the value is unknown, the field is set to 0x8000.

10h
OEM-defined
DWORD
Varies
Contains OEM- or BIOS vendor-specific information.

14h
Nominal Value
WORD
Varies
The nominal value for the probe’s reading in 1/10th degrees C. If the value is unknown, the field is set to 0x8000. This field is present in the structure only if the structure’s Length is larger than 14h.

3.3.29.1 Temperature Probe — Location and Status

Important Note: Each of the bit-field values map to enumerated values that are controlled by the DMTF, not this specification.

Bit Range
Field Name
Value
Meaning

7:5
Status
001.....
Other

010.....
Unknown

011.....
OK

100.....
Non-critical

101.....
Critical

110.....
Non-recoverable

4:0
Location
...00001
Other

...00010
Unknown

...00011
Processor

...00100
Disk

...00101
Peripheral Bay

...00110
System Management Module

...00111
Motherboard

...01000
Memory Module

...01001
Processor Module

...01010
Power Unit

...01011
Add-in Card

3.3.30 Electrical Current Probe (Type 29)

This structure supports the population of the DMTF|Electrical Current Probe group, as defined in the DMTF’s MASTER.MIF and describes the attributes for an electrical current probe in the system. Each structure describes a single electrical current probe.

Note: This structure type was added for specification v2.2.

Offset
Name
Length
Value
Description

00h
Type
BYTE
29
Electrical Current Probe indicator

01h
Length
BYTE
Varies
Length of the structure, at least 14h.

02h
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
Description
BYTE
STRING
The number of the string that contains additional descriptive information about the probe or its location.

05h
Location and Status
BYTE
ENUM
Defines the probe’s physical location and the status of the current monitored by this current probe. See 3.3.30.1.

06h
Maximum Value
WORD
Varies
The maximum current readable by this probe, in milliamps. If the value is unknown, the field is set to 0x8000.

08h
Minimum Value
WORD
Varies
The minimum current readable by this probe, in milliamps. If the value is unknown, the field is set to 0x8000.

0Ah
Resolution
WORD
Varies
The resolution for the probe’s reading, in tenths of milliamps. If the value is unknown, the field is set to 0x8000.

0Ch
Tolerance
WORD
Varies
The tolerance for reading from this probe, in plus/minus milliamps. If the value is unknown, the field is set to 0x8000.

0Eh
Accuracy
WORD
Varies
The accuracy for reading from this probe, in plus/minus 1/100th of a percent. If the value is unknown, the field is set to 0x8000.

10h
OEM-defined
DWORD
Varies
Contains OEM- or BIOS vendor-specific information.

14h
Nominal Value
WORD
Varies
The nominal value for the probe’s reading in milliamps. If the value is unknown, the field is set to 0x8000. This field is present in the structure only if the structure’s Length is larger than 14h.

3.3.30.1 Current Probe — Location and Status

Important Note: Each of the bit-field values map to enumerated values that are controlled by the DMTF, not this specification.

Bit Range
Field Name
Value
Meaning

7:5
Status
001.....
Other

010.....
Unknown

011.....
OK

100.....
Non-critical

101.....
Critical

110.....
Non-recoverable

4:0
Location
...00001
Other

...00010
Unknown

...00011
Processor

...00100
Disk

...00101
Peripheral Bay

...00110
System Management Module

...00111
Motherboard

...01000
Memory Module

...01001
Processor Module

...01010
Power Unit

...01011
Add-in Card

3.3.31 Out-of-Band Remote Access (Type 30)

This structure supports the population of the DMTF|Out-of-Band Remote Access group, as defined in the DMTF’s MASTER.MIF and describes the attributes and policy settings of a hardware facility that may be used to gain remote access to a hardware system when the operating system is not available due to power-down status, hardware failures, or boot failures.

Note: This structure type was added for specification v2.2.

Offset
Name
Length
Value
Description

00h
Type
BYTE
30
Out-of-Band Remote Access indicator

01h
Length
BYTE
06h
Length of the structure.

02h
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
Manufacturer Name
BYTE
STRING
The number of the string that contains the manufacturer of the out-of-band access facility.

05h
Connections
BYTE
Bit-field
Identifies the current remote-access connections:

Bits 7:2

Reserved for future definition by
this specification, set to all zeros.

Bit 1
Outbound Connection Enabled. Identifies whether (1) or not (0) the facility is allowed to initiate outbound connections to contact an alert management facility when critical conditions occur.

Bit 0
Inbound Connection Enabled. Identifies whether (1) or not (0) the facility is allowed to initiate outbound connections to receive incoming connections for the purpose of remote operations or problem management

3.3.32 Boot Integrity Services (BIS) Entry Point (Type 31)
Structure type 31 (decimal) is reserved for use by the Boot Integrity Services (BIS). Refer to the Boot Integrity Services API Specification for content details.
Note: This structure type was added for specification v2.3.

3.3.33 System Boot Information (Type 32)

The client system firmware, e.g. BIOS, communicates the System Boot Status to the client’s Pre-boot Execution Environment (PXE) boot image or OS-present management application via this structure. When used in the PXE environment, for example, this code identifies the reason the PXE was initiated and can be used by boot-image software to further automate an enterprise’s PXE sessions. For example, an enterprise could choose to automatically download a hardware-diagnostic image to a client whose reason code indicated either a firmware- or operating system-detected hardware failure.
Note: This structure type was added for specification v2.3.
Offset
Name
Length
Value
Description

00h
Type
BYTE
32
System Boot Information structure identifier

01h
Length
BYTE
Varies
Length of the structure, in bytes; at least 0Bh.

02h
Handle
WORD
Varies

04h
Reserved
6 BYTEs
00h
Reserved for future assignment via this specification, all bytes are set to 00h.

0Ah
Boot Status
Length-10 Bytes
Varies
The Status and Additional Data fields that identify the boot status. See 3.3.33.1 for additional information.

3.3.33.1 System Boot Status

Description
Status
Additional Data

No errors detected
0
None

No bootable media
1
none

The “normal” operating system failed to load.
2
none

Firmware-detected hardware failure, including “unknown” failure types.
3
none

Operating system-detected hardware failure. For ACPI OS’s, the system firmware might set this reason code when the OS reports a boot failure via interfaces defined in the Simple Boot Flag Specification.
4
none

User-requested boot, usually via a keystroke
5
none

System security violation
6
none

Previously-requested image. This reason code allows a coordination between OS-present software and the OS-absent environment. For example, an OS-present application might enable (via a platform-specific interface) the system to boot to the PXE and request a specific boot-image.
7
varies

A system watchdog timer expired, causing the system to reboot.
8
none

Reserved for future assignment via this specification.
9-127
Varies

Vendor/OEM-specific implementations. The Vendor/OEM identifier is the “Manufacturer” string found in the System Identification structure.
128-191
Varies

Product-specific implementations. The product identifier is formed by the concatenation of the “Manufacturer” and “Product Name” strings found in the System Information structure.
192-255
Varies

3.3.34 64-bit Memory Error Information (Type 33)

This structure supports the population of the DMTF|Physical Memory Array and DMTF|Memory Device groups, as defined in the DMTF’s MASTER.MIF, when the error address is above 4G (0xFFFFFFFF). The Last Error Update field, present in those groups, is not supplied in this structure since that field’s attribute is known at the system-management application layer, not the BIOS.
Note: This structure type was added for specification v2.3.

Offset
Name
Length
Value
Description

00h
Type
BYTE
33
64-bit Memory Error Information type

01h
Length
BYTE
1Fh
Length of the structure.

02h
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
Error Type
BYTE
ENUM
The type of error that is associated with the current status reported for the memory array or device. See 3.3.19.1 for definitions..

05h
Error Granularity
BYTE
ENUM
Identifies the granularity, e.g. device vs. Partition, to which the error can be resolved. See 3.3.19.2 for definitions.

06h
Error Operation
BYTE
ENUM
The memory access operation that caused the error. See 3.3.19.3 for definitions.

07h
Vendor Syndrome
DWORD
Varies
The vendor-specific ECC syndrome or CRC data associated with the erroneous access. If the value is unknown, this field contains 0000 0000h.

0Bh
Memory Array Error Address
QWORD
Varies
The 64-bit physical address of the error based on the addressing of the bus to which the memory array is connected. If the address is unknown, this field contains 8000 0000 0000 0000h.

13h
Device Error Address
QWORD
Varies
The 64-bit physical address of the error relative to the start of the failing memory device, in bytes. If the address is unknown, this field contains 8000 0000 0000 0000h.

1Bh
Error Resolution
DWORD
Varies
The range, in bytes, within which the error can be determined, when an error address is given. If the range is unknown, this field contains 8000 0000h.

3.3.35 Management Device (Type 34)

The information in this structure defines the attributes of a Management Device. A Management Device might control one or more fans or voltage, current, or temperature probes as defined by one or more Management Device Component structures — see 3.3.36 Management Device Component (Type 35) on page 13.
Note: This structure type was added for specification v2.3.

Offset
Name
Length
Value
Description

00h
Type
BYTE
34
Management Device indicator

01h
Length
BYTE
0Bh
Length of the structure.

02h
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
Description
BYTE
STRING
The number of the string that contains additional descriptive information about the device or its location.

05h
Type
BYTE
Varies
Defines the device’s type, see 3.3.35.1

06h
Address
DWORD
Varies
Defines the device’s address

0Ah
Address Type
BYTE
Varies
Defines the type of addressing used to access the device, see 3.3.35.2.

3.3.35.1 Management Device — Type

Byte Value
Meaning

01h
Other

02h
Unknown

03h
National Semiconductor LM75

04h
National Semiconductor LM78

05h
National Semiconductor LM79

06h
National Semiconductor LM80

07h
National Semiconductor LM81

08h
Analog Devices ADM9240

09h
Dallas Semiconductor DS1780

0Ah
Maxim 1617

0Bh
Genesys GL518SM

0Ch
Winbond W83781D

0Dh
Holtek HT82H791

3.3.35.2 Management Device — Address Type

Byte Value
Meaning

01h
Other

02h
Unknown

03h
I/O Port

04h
Memory

05h
SM Bus

3.3.36 Management Device Component (Type 35)

This structure associates a cooling device or environmental probe with structures that define the controlling hardware device and (optionally) the component’s thresholds.
Note: This structure type was added for specification v2.3.

Offset
Name
Length
Value
Description

00h
Type
BYTE
35
Management Device Component indicator

01h
Length
BYTE
0Bh
Length of the structure.

02h
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
Description
BYTE
STRING
The number of the string that contains additional descriptive information about the component.

05h
Management Device Handle
WORD
Varies
The handle, or instance number, of the Management Device — see 3.3.35 Management Device (Type 34) on page 13 — that contains this component.

07h
Component Handle
WORD
Varies
The handle, or instance number, of the probe or cooling device that defines this component. See 3.3.27 Voltage Probe (Type 26) on page 13, 3.3.28 Cooling Device (Type 27) on page 13, 3.3.29 Temperature Probe (Type 28) on page 13, and 3.3.30 Electrical Current Probe (Type 29) on page 13.

09h
Threshold Handle
WORD
Varies
The handle, or instance number, associated with the device thresholds — see 3.3.37 Management Device Threshold Data (Type 36) on page 13. A value of 0FFFFh indicates that no Threshold Data structure is associated with this component.

3.3.37 Management Device Threshold Data (Type 36)

The information in this structure defines threshold information for a component (probe or cooling-unit) contained within a Management Device.

For each threshold field present in the structure:

· The threshold units (millivolts, milliamps, 1/10th degrees C, or RPMs) are as defined by the associated probe or cooling-unit component structure

· If the value is unavailable, the field is set to 0x8000.

Note: This structure type was added for specification v2.3.

Offset
Name
Length
Value
Description

00h
Type
BYTE
36
Management Device Threshold Data structure indicator

01h
Length
BYTE
10h
Length of the structure.

02h
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

04h
Lower Threshold – Non-critical
WORD
Varies
The lower non-critical threshold for this component

06h
Upper Threshold – Non-critical
WORD
Varies
The upper non-critical threshold for this component

08h
Lower Threshold – Critical
WORD
Varies
The lower critical threshold for this component

0Ah
Upper Threshold – Critical
WORD
Varies
The upper critical threshold for this component

0ch
Lower Threshold – Non-recoverable
WORD
Varies
The lower non-recoverable threshold for this component

0eh
Upper Threshold – Non-recoverable
WORD
Varies
The upper non-recoverable threshold for this component

3.3.38 Inactive (Type 126)

This structure definition supports a system implementation where the SMBIOS structure-table is a superset of all supported system attributes and provides a standard mechanism for the system BIOS to signal that a structure is currently inactive and should not be interpreted by the upper-level software.

For example, a portable system might include System Slot structures that are reported only when the portable has docked. An undocked system would report those structures as Inactive. When the system was docked, the structure Type would be changed from Inactive to the System Slot equivalent by the system-specific software.

Upper-level software that interprets the SMBIOS structure-table should bypass an Inactive structure just like a structure type that the software does not recognize.

Note: This structure type was added for specification v2.2.

Offset
Name
Length
Value
Description

00h
Type
BYTE
126
Inactive structure indicator

01h
Length
BYTE
Varies
Length of the structure.

02h
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

3.3.39 End-of-Table (Type 127)

This structure type identifies the end of the structure table, that might be earlier than the last byte within the buffer specified by the structure. To ensure backward compatibility with management software written to previous versions of this specification, a system implementation should use the end-of-table indicator in a manner similar to the Inactive (Type 126) structure type — the structure table is still reported as a fixed-length and the entire length of the table is still indexable. If the end-of-table indicator is used in the last physical structure in a table, the field’s length is encoded as 4.

Note: This structure type was added for specification v2.2.
Offset
Name
Length
Value
Description

00h
Type
BYTE
127
End-of-table indicator.

01h
Length
BYTE
Varies
Length of the structure.

02h
Handle
WORD
Varies
The handle, or instance number, associated with the structure.

Appendices

4. Structure Checklist
4.1 Correlation to DMTF Groups
This checklist identifies which System Management BIOS structures are needed to populate DMTF groups required by DMI 2.0 (per DMTF Desktop Management Interface (DMI) 2.0 Conformance Requirements, Version 1.0).

Structure Type
Needed for DMTF DMI 2.0
DMTF Group Required
DMTF Group Supported

BIOS Information (Type 0)
Recommended
Yes
DMTF|System BIOS|001

System Information (Type 1)
Recommended
Yes
DMTF|ComponentID|001

Base Board Information (Type 2)
Optional

System Enclosure or Chassis (Type 3)
Recommended
Yes
DMTF|Physical Container Global Table|001

Processor Information (Type 4)
Recommended, one entry per processor socket
Yes
DMTF|Processor|003

Memory Controller Information (Type 5)
Optional, types 16 and 17 preferred

Memory Module Information (Type 6)
Optional, types 16 and 17 preferred

Cache Information (Type 7)
Recommended, one entry per external processor cache at a minimum.
Yes
DMTF|System Cache|002

Port Connector Information (Type 8)
Recommended

System Slots (Type 9)
Recommended
Yes
DMTF|System Slots|003

On Board Devices Information (Type 10)
Optional

OEM Strings (Type 11)
Optional

System Configuration Options (Type 12)
Optional

BIOS Language Information (Type 13)
Optional

Group Associations (Type 14)
Optional

System Event Log (Type 15)
Recommended

Physical Memory Array (Type 16)
Recommended
Yes
DMTF|Physical Memory Array|001

Memory Device (Type 17)
Recommended
Yes
DMTF|Memory Device|001

32-bit Memory Error Information (Type 18)
Recommended, if a memory-related error occurred

DMTF|Physical Memory Array|001 and DMTF|Memory Device|001

Memory Array Mapped Address (Type 19)
Recommended
Yes
DMTF|Memory Array Mapped Addresses|001

Memory Device Mapped Address (Type 20)
Recommended
Yes
DMTF|Memory Device Mapped Addresses|001

Built-in Pointing Device (Type 21)
Recommended for portable systems
Mobile
DMTF|Pointing Device|001

Portable Battery (Type 22)
Recommended for portable systems.
Mobile
DMTF|Portable Battery|001

System Reset (Type 23)
Recommended

DMTF|System Reset|001

Hardware Security (Type 24)
Recommended5

DMTF|Physical Hardware Security|001

System Power Controls (Type 25)
Recommended5

DMTF|System Power Controls|001

Voltage Probe (Type 26)
Recommended5

DMTF|Voltage Probe|001

Cooling Device (Type 27)
Recommended5
Server
DMTF|Cooling Device|001

Temperature Probe (Type 28)
Recommended5

DMTF|Temperature Probe|001

Electrical Current Probe (Type 29)
Recommended5

DMTF|Electrical Current Probe|001

Out-of-Band Remote Access (Type 30)
Recommended5

DMTF|Out-of-Band Remote Access|001

Boot Integrity Services (BIS) Entry Point (Type 31)
N/A
N/A
N/A

System Boot Information (Type 32)
N/A
N/A
N/A

64-bit Memory Error Information (Type 33)
Recommended, if a memory-related error occurred

DMTF|Physical Memory Array|001 and DMTF|Memory Device|001

Management Device (Type 34)
Recommended

DMTF|Voltage Probe|001, DMTF|Cooling Device|001, DMTF|Temperature Probe|001, DMTF|Electrical Current Probe|001

Management Device Component (Type 35)
Recommended

DMTF|Voltage Probe|001, DMTF|Cooling Device|001, DMTF|Temperature Probe|001, DMTF|Electrical Current Probe|001

Management Device Threshold Data (Type 36)
Recommended

DMTF|Voltage Probe|001, DMTF|Cooling Device|001, DMTF|Temperature Probe|001, DMTF|Electrical Current Probe|001

Inactive (Type 126)
Optional, use as needed

End-of-Table (Type 127)
Required for SMBIOS 2.2 and later implementations.

4.2 Conformance Guidelines

The following describes the conformance requirements for an SMBIOS v2.3 or later implementation.
1. The table anchor string "_SM_" is present in the address range 0xF0000 to 0xFFFFF on a 16-byte boundary.

2. Table entry-point verification:

2.1. The Entry Point Length field value is at least 0x1F.

2.2. The entry-point checksum evaluates to 0.

2.3. The SMBIOS Version (Major.Minor) is at least 2.3.

2.4. The Intermediate Anchor String is "_DMI_"

2.5. The intermediate checksum evaluates to 0.

3. The structure-table is traversable and conforms to the entry-point specifications:

3.1. The structure-table's linked-list is traversable within the length and structure-count bounds specified by the entry-point structure.

3.2. The overall size of the structure table is less than or equal to the Structure Table Length specified by the entry-point structure.

3.3. Each structure's length must be at least 4 (the size of a structure header).

3.4. No structure handle number is repeated.

3.5. The last structure is the end-of-table (0x7F).

3.6. The number of structures found within the table equals the Number of SMBIOS Structures field present in the entry-point.

3.7. The maximum structure size (formatted area plus its string-pool) is less than or equal to the Maximum Structure Size specified by the entry-point.
4. Required structures and corresponding data are present, see 3.2 Required Structures and Data on page 13:
4.1. BIOS Information (Type 0)

4.1.1. One and only one structure of this type is present.
4.1.2. The structure Length field is at least 13h

4.1.3. BIOS Version string is present and non-null

4.1.4. BIOS Release Date string is present, non-null, and includes a 4-digit year.

4.1.5. BIOS Characteristics: bits 3:0 are all 0, at least one of bits 31:4 is set to 1.

4.2. System Information (Type 1)

4.2.1. One and only one structure of this type is present.

4.2.2. The structure Length field is at least 19h.
4.2.3. Manufacturer string is present and non-null

4.2.4. Product Name string is present and non-null

4.2.5. UUID field is neither 00000000 00000000 nor FFFFFFFF FFFFFFFF.

4.2.6. Wake-up Type field is neither 00h (Reserved) nor 02h (Unknown).
4.3. System Enclosure (Type 3)

4.3.1. One or more structure of this type is present.

4.3.2. The structure length is at least 0Dh.

4.3.3. Manufacturer string is present and non-null in each structure.

4.3.4. Type field is neither 00h (Reserved) nor 02h (Unknown)

4.4. Processor Information (Type 4)

4.4.1. The number of structures defines the maximum number of processors supported by the system; at least one structure with a Processor Type field of "Central Processor" must be present.

4.4.2. Each structure's length is at least 20h.

4.4.3. Socket Designation string is present and non-null

4.4.4. Processor Type field is neither 00h (Reserved) nor 02h (Unknown)

4.4.5. (*)Processor Family field is neither 00h (Reserved) nor 02h (Unknown)

4.4.6. (*)Processor Manufacturer string is present and non-null

4.4.7. Max Speed field is non-0.

4.4.8. (*)CPU Status sub-field of the Status field is not 0 (Unknown)
4.4.9. Processor Upgrade field is neither 00h (Reserved) nor 02h (Unknown)

4.4.10. Lx (x=1,2,3) Cache Handle fields, if not set to 0xFFFF, reference Cache Information (Type 7) structures.

Note: Fields preceded by (*) are only checked if the CPU Socket Populated sub-field of the Status field is set to "CPU Populated".

4.5. Cache Information (Type 7)

4.5.1. One structure is present for each external-to-the-processor cache.

4.5.2. Each structure's Length is at least 13h.

4.5.3. Socket Designation string is present and non-null if the cache is external to the processor (Location sub-field of Cache Configuration field is 01b).

4.5.4. Operational Mode and Location sub-fields of the Cache Configuration field are not 11b (Unknown)

4.6. System Slots (Type 9)

4.6.1. One structure is present for each upgradeable system slot.

4.6.2. Each structure's Length is at least 0Dh.

4.6.3. Slot Designation string is present and non-null.

4.6.4. Slot Type is neither 00h (Reserved) nor 02h (Unknown).

4.6.5. Slot Data Bus Width is neither 00h (Reserved) or 02h (Unknown)

4.6.6. Current Usage is not set to 00h (Reserved). If the "Slot Type" provides device presence-detect capabilities, e.g. PCI or AGP, Current Usage is not set to 02h (Unknown).

4.6.7. Slot ID is set to a meaningful value.

4.6.8. Slot Characteristics 1, bit 0, is not set to 1.

4.7. Physical Memory Array (Type 16)

4.7.1. At least one structure is present with "Use" set to 03h (System memory)

4.7.2. Each structure's length is at least 0Fh.

4.7.3. Location is neither 00h (Reserved) nor 02h (Unknown)

4.7.4. Use is neither 00h (Reserved) nor 02h (Unknown).

4.7.5. Memory Error Correction is neither 00h (Reserved) nor 02h (Unknown)

4.7.6. Maximum Capacity is not set to 80000000h (Unknown)

4.7.7. Number of Memory Devices is not 0 and equals the number of Memory Device (Type 17) structures that reference the handle of the Physical Memory Array structure.

4.8. Memory Device (Type 17)

4.8.1. For each Physical Memory Array, there must be "Number of Memory Devices" Memory Device structures that map back (via Handle) to the referencing memory array. One structure is required for each socketed system-memory device, whether or not the socket is currently populated. If the system includes soldered-on system-memory, one additional structure is required to identify that memory device.

4.8.2. Each structure's length is at least 15h.

4.8.3. Memory Array Handle references a Physical Memory Device (Type 17) structure.

4.8.4. Total Width is not 0FFFFh (Unknown) if the memory device is installed (Size is not 0).

4.8.5. Data Width is not 0FFFFh (Unknown)

4.8.6. Size is not 0FFFFh (Unknown)

4.8.7. Form Factor is not 00h (Reserved) or 02h (Unknown)

4.8.8. Device Set is not 0FFh (Unknown)

4.8.9. Device Locator string is present and non-null.

4.9. Memory Array Mapped Address (Type 19)

4.9.1. One structure is provided for each contiguous block of memory addresses mapped to a Physical Memory Array.

4.9.2. Each structure's length is at least 0Fh.

4.9.3. Ending Address value is higher in magnitude than the Starting Address value.

4.9.4. Memory Array Handle references a Physical Memory Array (Type 17)

4.9.5. Each structure's address range (Starting Address to Ending Address) is unique and non-overlapping.

4.9.6. Partition Width is not 0.

4.10. Memory Device Mapped Address (Type 20)

4.10.1. Sufficient structures are provided to provide device-level mapping to all address space defined by the Memory Array Mapped Address (Type 19) structures.

4.10.2. Each structure's length is at least 13h.

4.10.3. Ending Address value is higher in magnitude than the Starting Address value.

4.10.4. Memory Device Handle references a Memory Device (Type 17) structure.

4.10.5. Memory Array Mapped Address Handle references a Memory Array Mapped Address (Type 19) structure.

4.10.6. Partition Row Position value is not 0 (Reserved), 0FFh (Unknown), or greater than the Partition Width field of the referenced Memory Array Mapped Address structure.

4.10.7. Interleave Position is not 0FFh (Unknown)

4.10.8. Interleaved Data Depth is not 0FFh (Unknown)

4.11. Boot Integrity Services (BIS) Entry Point (Type 31). This structure is optional, but if it is present the following checks are performed:

4.11.1. The structure's length is at least 1Ch.

4.11.2. The structure-level checksum evaluates to 00h.

4.11.3. 16-bit Entry Point is not 0.

4.11.4. 32-bit Entry Point is not 0.

4.12. System Boot Information (Type 32)

4.12.1. One and only one structure of this type is present.

4.12.2. The structure's length is at least 0Bh.

5. Using the Table Convention

This section contains pseudo-code that describes the method that application software can use to parse the table-based SMBIOS structures. The example searches for the first structure of the type specified, returning the handle of the structure found or 0xFFFF if no structure of the type was found in the list. TableAddress and StructureCount values are those previously found by locating the Table Entry Point structure in low memory.

typedef unsigned short ushort;

typedef unsigned char uchar;

typedef struct

 {

 uchar Type;

 uchar Length;

 ushort Handle;

 } HEADER;

ushort FindStructure(char *TableAddress, ushort StructureCount, uchar Type)

 {

 ushort i, handle;

 uchar lasttype;

 i = 0;

 handle = 0xFFFF;

 while(i < StructureCount && handle == 0xFFFF)

 {

 i++;

 lasttype = ((HEADER *)TableAddress)->Type;

 if(lasttype == Type)

 {

 handle = ((HEADER *)TableAddress)->Handle;

 } /* Found first structure of the requested type */

 else

 {

 TableAddress += ((HEADER *)TableAddress)->Length;

 while(*((int *)TableAddress) != 0)

 {

 TableAddress++;

 } /* Get past trailing string-list */

 TableAddress += 2;

 } /* Increment address to start of next structure */

 } /* END while-loop looking for structure type */

 return handle;

 } /* END FindStructure */

� Beginning with v2.3 implementations, if the Cache Handle is 0FFFFh, management software must make no assumptions about the cache's attributes and should report all cache-related attributes as unknown. The definitive absence of a specific cache is identified by referencing a Cache Information structure and setting that structure's Installed Size field to 0.

� Some v2.0 specification implementations used Processor Family type value 30h to represent a Pentium ® Pro processor.

� The Log Status and Log Change Token fields might not be up-to-date (dynamic) when the structure is accessed using the table interface.

� All BIOS counters which support the Multiple-Event Counters are reset to zero each time the system boots.

� If the feature is present in the system.

�PAGE \# "'Page: '#'�'" ��v2.3 Draft revision log:

Changes for Draft 2

Additional Memory Device enumerations for Form Factor and Device Type, per IBM’s request.

Added required structures and data from WfM materials

Changes for Draft 3

Added OEM/BIOS Reserved DWORD for System Enclosure, per HP’s request

Added Speed field to Memory Device structure, per Dell’s request

Renamed “System Startup Reason Code” to align with WfM materials

Changes for Draft 4

Updated Intel document site

Corrected URL for Boot Integrity Services

Updated version numbers for MASTER.MIF and DMTF Conformance Requirements

Added Management Device, Management Device Component, and Management Device Thresholds structures, per Intel’s request

Added nominal values to each of the probe and cooling device structures, per Intel’s request

Changes for Draft 5

Corrected “legal” name for Xeon processor

Clarified the requirements for the Processor Information Cache Handle fields.

Added “AC Power Restoration” as a System Information/Wake-up Type, per Intel’s request

Updated required structures and date section to align with WfM submission, per Dell

Modified description of Processor Cache Handle fields

Added new structure evolution description

Added detailed conformance guidelines section (4.2).

Re-added System Standard Groups Definition to reference list; pointed reader there for Physical Memory example.

Changes for Release Candidate

Updated Intel URL for document

Removed 64-bit Memory Array Mapped Address and 64-bit Memory Device Mapped Address structures; they’re not required since the 32-bit forms of those structures represent addresses in 1KB units, providing expansion up the 4TB.

smbios23.doc
 104 of 13
 12 August 1998

