
DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 1 of 49 27 August, 1996

American Megatrends Inc.
Award Software International Inc.

Dell Computer Corporation
Intel Corporation

Phoenix Technologies Ltd.
SystemSoft Corporation

Desktop Management BIOS Specification

Version 2.0

March 6, 1996

This specification has been made available to the public. You are hereby granted the right to use,
implement,reproduce and distribute this specification with the forgoing rights, at no charge. This specification is, and
shall remain, the property of American Megatrends Inc. (“AMI”), Award Software International Inc. (“Award”),
Dell Computer Corporation (“Dell”), Intel Corporation (“Intel”), Phoenix Technologies LTD ("Phoenix") and
SystemSoft Corporation (“SystemSoft”). No license under any patents of other intellectual property rights are granted
either expressly or impliedly by the publication of this document by AMI, Award, Dell, Intel, Phoenix, and
SystemSoft.
NEITHER AMI, AWARD, DELL, INTEL, PHOENIX, NOR SYSTEMSOFT MAKE ANY
REPRESENTATION OR WARRANTY REGARDING THIS SPECIFICATION OR ANY PRODUCT OR
ITEM DEVELOPED BASED ON THIS SPECIFICATION. USE OF THIS SPECIFICATION FOR ANY
PURPOSE IS AT THE RISK OF THE PERSON OR ENTITY USING IT. AMI, AWARD, DELL, INTEL,
PHOENIX, AND SYSTEMSOFT DISCLAIM ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING
BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND FREEDOM FROM INFRINGEMENT. NEITHER AMI, AWARD, DELL,
INTEL, PHOENIX, NOR SYSTEMSOFT WILL BE RESPONSIBLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL OR OTHER DAMAGES RELATING TO THE USE OF THIS SPECIFICATION.
WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, NEITHER AMI, AWARD, DELL,
INTEL, PHOENIX, NOR SYSTEMSOFT MAKE ANY WARRANTY OF ANY KIND THAT ANY ITEM
DEVELOPED BASED ON THIS SPECIFICATION, OR ANY PORTION OF IT, WILL NOT INFRINGE ANY
COPYRIGHT, PATENT, TRADE SECRET OR OTHER INTELLECTUAL PROPERTY RIGHT OF ANY
PERSON OR ENTITY IN ANY COUNTRY.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 2 of 49 27 August, 1996

Document Information

The softcopy version of this specification, in Microsoft Word-for-Windows 6.0 format, is available as DMIB20.DOC
via ftp://ftp.ptltd.com/pub/phoenix_docs/dmib20.doc or from the Phoenix Technologies World Wide Web site at
http://www.ptltd.com/techs/specs.html.

Document Revision History

Version 2.0D 09/14/95 Initial Release of DRAFT COPY
Version 2.0M 12/12/95 Final draft released, with the following changes:

- Specified that dmiStorageBase (Function 50h) and NVStorageBase (Function
55h) must be paragraph-aligned.
- Added Command value to change a string to function 52h; Command
enumeration values modified.
- Removed redundant enumerations from Processor Family list
- Corrected Memory Subsystem Example
- Corrected/clarified Indexed I/O access-methods for event-log; Access Method
enumeration values and Access Method Address union modified
- Added clarifications to some of the event log types

Version 2.00 03/06/96 Final release, with the following changes:
- Specified that all structures end with a terminating NULL, even if the formatted
portion of the structure contains string-reference fields and all the string fields are
set to 0.
- Corrected the Memory Subsystem Example, handles are now correctly created
with a ‘dw’.
- Fixed formatting of some bit definition fields and function examples.

Table Of Contents _______________________________

1. OVERVIEW 4

1.1 REFERENCES 4
1.2 ENHANCEMENTS TO THE CURRENT BIOS ARCHITECTURE 4

2. ACCESSING DMI INFORMATION 5

2.1 CALLING CONVENTION 5
2.2 DMI BIOS FUNCTIONS 5
2.3 ERROR RETURN CODES 6
2.4 DMI BIOS STRUCTURE ACCESS I NTERFACE 7

2.4.1 FUNCTION 50H – GET DMI INFORMATION 7
2.4.2 FUNCTION 51H – GET DMI STRUCTURE 8
2.4.3 FUNCTION 52H – SET DMI STRUCTURE 9

2.5 STRUCTURE CHANGE NOTIFICATION I NTERFACE 12
2.5.1 FUNCTION 53H – GET STRUCTURE CHANGE INFORMATION 13

2.6 CONTROL I NTERFACE 15
2.6.1 FUNCTION 54H – DMI CONTROL 15
2.6.2 DMI_CONTROL_LOGGING CONTROL WORD 16

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 3 of 49 27 August, 1996

2.7 GENERAL PURPOSE NONVOLATILE STORAGE I NTERFACE 17
2.7.1 FUNCTION 55H – GET GENERAL-PURPOSE NONVOLATILE INFORMATION 18
2.7.2 FUNCTION 56H – READ GENERAL-PURPOSE NONVOLATILE DATA 19
2.7.3 FUNCTION 57H – WRITE GENERAL-PURPOSE NONVOLATILE DATA 20

3. DMI BIOS STRUCTURES 22

3.1 STRUCTURE STANDARDS 22
3.1.1 STRUCTURE HEADER FORMAT 22
3.1.2 TEXT STRINGS 23

3.2 STRUCTURE DEFINITIONS 24
3.2.1 BIOS INFORMATION (TYPE 0) 24
3.2.2 SYSTEM INFORMATION (TYPE 1) 26
3.2.3 BASE BOARD INFORMATION (TYPE 2) 26
3.2.4 SYSTEM ENCLOSURE OR CHASSIS (TYPE 3) 26
3.2.5 PROCESSOR INFORMATION (TYPE 4) 28
3.2.6 MEMORY CONTROLLER INFORMATION (TYPE 5) 31
3.2.7 MEMORY MODULE INFORMATION (TYPE 6) 33
3.2.8 CACHE INFORMATION (TYPE 7) 36
3.2.9 PORT CONNECTOR INFORMATION (TYPE 8) 37
3.2.10 SYSTEM SLOTS (TYPE 9) 40
3.2.11 ON BOARD DEVICES INFORMATION (TYPE 10) 42
3.2.12 OEM STRINGS (TYPE 11) 43
3.2.13 SYSTEM CONFIGURATION OPTIONS (TYPE 12) 43
3.2.14 BIOS LANGUAGE INFORMATION (TYPE 13) 43
3.2.15 GROUP ASSOCIATIONS (TYPE 14) 44
3.2.16 SYSTEM EVENT LOG (TYPE 15) 45

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 4 of 49 27 August, 1996

1. Overview ________________________________
Desktop Management Interface (DMI) is a new method of managing computers in an enterprise. The main component
of DMI is the Management Information Format Database, or MIF. This database contains all the information about the
computing system and its components. Using DMI, a system administrator can obtain the types, capabilities,
operational status, installation date, and other information about the system components.

The Desktop Management BIOS Specification documents a standard embedded tool-set to assist in the generation of a
system MIF database.

1.1 References

Desktop Management Interface Specification, Version 1.0, April 29, 1994.
DMTF PC Systems Standard MIF Definition, Version 1.3, March 1, 1995.
DMTF Server Standard MIF Definition, Draft Version 0.3, March 1, 1995
Plug and Play BIOS Specification, Version 1.0A, May 5, 1994
PCI BIOS Specification, Version 2.1, August 26, 1994

1.2 Enhancements to the current BIOS architecture

The DMI specification requires that certain information about the System Board be made available to an applications
program. For systems implementing DMI BIOS Extensions, user-defined information will be located in a series of
data structures. These data structures are accessed by the method described in Section 2.

Vendors may decide to include all or any part of this information in their designs. For a complete solution that is
compatible with the Service Layer distributed by the DMTF, vendors must also implement component instrumentation.
This instrumentation allows the Service Layer to gain access to the information stored in the BIOS. In addition, a MIF
file must be provided that describes that data that is provided by the BIOS and the method of accessing that data. As a
minimum, the PC Standard System MIF provided by the DTMF can be used for this purpose.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 5 of 49 27 August, 1996

2. Accessing DMI Information

2.1 Calling Convention

To prevent the proliferation of interfaces for accessing information embedded in the System BIOS, the Desktop
Management BIOS Specification will follow the System Device Node model used by Plug and Play, and use Plug and
Play BIOS functions to access DMI information. Plug and Play functions 50h-5Fh have been assigned to the DMI
BIOS Interface.

Each of the DMI BIOS Plug-and-Play functions is available both in real-mode and 16-bit protected-mode. A function
called in 16-bit protected-mode supports both 16-bit and 32-bit stack segments.

2.2 DMI BIOS Functions

This table defines the current DMI BIOS Functions.

DMI BIOS Function Function
Number

Description Required/Optional

GET_DMI_INFORMATION 50h Returns the Number of Structures,
the Size of the Largest Structure,
and the DMI BIOS Revision.

Required

GET_DMI_STRUCTURE 51h Copies the information for the
specified DMI Structure into the
buffer specified by the caller.

Required

SET_DMI_STRUCTURE 52h Copies the information for the
specified DMI structure from the
buffer specified by the caller.

Optional

GET_DMI_STRUCTURE_
CHANGE_INFO

53h Returns the DMI Structure Change
Information into a 16-byte buffer
specified by the caller.

Required for Dynamic
Structure-change
Notification Support

DMI_CONTROL 54h Controls a system action Optional
GET_GPNV_INFORMATION 55h Returns information about the

General Purpose Non-Volatile
Storage Area

Required for GPNV
Support

READ_GPNV_DATA 56h Reads the entire specified GPNV
contents into a buffer specified by
the caller.

Required for GPNV
Support

WRITE_GPNV_DATA 57h Copies the contents of the user
specified buffer into the GPNV.
The function causes the entire
specified GPNV to be updated.

Required for GPNV
Support

Reserved for Future Use 58h-5FhReserved, will return
DMI_FUNCTION_NOT_
SUPPORTED.

Reserved

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 6 of 49 27 August, 1996

2.3 Error Return Codes

After the call has been made, the following return codes are available in the AX Register.

Return Code Value Description
DMI_SUCCESS 00h Function Completed Successfully
DMI_UNKNOWN_FUNCTION 81h Unknown, or invalid, function number passed
DMI_FUNCTION_NOT_SUPPORTED 82h The function is not supported on this system
DMI_INVALID_HANDLE 83h DMI Structure number/handle passed is invalid or out of

range.
DMI_BAD_PARAMETER 84h The function detected invalid parameter or, in the case of

a “Set DMI Structure” request, detected an invalid value
for a to-be-changed structure field.

DMI_INVALID_SUBFUNCTION 85h The SubFunction parameter supplied on a DMI Control
function is not supported by the system BIOS.

DMI_NO_CHANGE 86h There are no changed DMI structures pending
notification.

DMI_ADD_STRUCTURE_FAILED 87h Returned when there was insufficient storage space to add
the desired structure.

DMI_READ_ONLY 8Dh A “Set DMI Structure” request failed because one or
more of the to-be-changed structure fields are read-only.

DMI_LOCK_NOT_SUPPORTED 90h The GPNV functions do not support locking for the
specified GPNV handle.

DMI_CURRENTLY_LOCKED 91h The GPNV lock request failed - the GPNV is already
locked.

DMI_ INVALID_LOCK 92h The caller has failed to present the predefined GPNVLock
value which is expected by the BIOS for access of the
GPNV area.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 7 of 49 27 August, 1996

2.4 DMI BIOS Structure Access Interface

2.4.1 Function 50h – Get DMI Information

Synopsis:
short FAR (*entryPoint)(Function, dmiBIOSRevision, NumStructures, StructureSize, dmiStorageBase,

dmiStorageSize, BiosSelector);
short Function; /* PnP BIOS Function 50h */
unsigned char FAR *dmiBIOSRevision; /* Revision of the DMI BIOS Extensions */
unsigned short FAR *NumStructures; /* Maximum Number of Structures the BIOS will return */
unsigned short FAR *StructureSize; /* Size of largest DMI Structure */
unsigned long FAR *dmiStorageBase; /* 32-bit physical base address for memory-mapped */

/* DMI data */
unsigned short FAR *dmiStorageSize; /* Size of the memory-mapped DMI data */
unsigned short BiosSelector; /* PnP BIOS readable/writable selector */

Description:
Required for DMI BIOS Support. This function will return the revision of the DMI BIOS Extensions and the
maximum number of DMI structures that the system BIOS will return information for in NumStructures. These
structures represent the DMI information that is embedded in the System BIOS. In addition to the number of structures,
the system BIOS will return the size, in bytes, of the largest DMI structure (and all of its supporting data) in
StructureSize. This information can be utilized by the system software to determine the amount of memory required to
get all of the DMI structures. Note: The system BIOS may return a value that is larger than the actual largest DMI
structure to facilitate hot docking or other dynamic DMI information. The BIOS may also return fewer than
NumStructures when the structures are retrieved using Function 51h. If the BIOS does not support DMI capability,
DMI_FUNCTION_NOT_SUPPORTED (82h) will be returned.

The dmiBIOSRevision parameter indicates compliance with a revision of this specification. It is a BCD value where
the upper nibble indicates the major version and the lower nibble the minor version. For revision 2.0 the returned
value will be 20h.

dmiStorageBase is updated by the BIOS call with the paragraph-aligned, 32-bit absolute physical base address of any
memory-mapped DMI structure information. If non-zero, this value allows the caller to construct a 16-bit data
segment descriptor with a limit of dmiStorageSize and read/write access for subsequent input to functions 51h to 54h.
If dmiStorageBase is 0, protected-mode mapping is not required the DMI structure information and the
dmiStorageSize return value has no meaning.

The BiosSelector parameter enables the system BIOS, if necessary, to update system variables that are contained in
the system BIOS memory space. If this function is called from protected mode, the caller must create a data segment
descriptor using the 16-bit Protected Mode data segment base address specified in the Plug and Play Installation
Check data structure, a limit of 64KB, and the descriptor must be read/write capable. If this function is called from
real mode, BiosSelector should be set to the Real mode 16-bit data segment address as specified in the Plug and Play
Installation Check Structure. Refer to section 4.4 of the Plug and Play BIOS Specification revision 1.0a for more
information on the Plug and Play Installation Check Structure and the elements that make up the structure.

This function is available in real mode and 16-bit protected mode.

Returns:
If successful - DMI_SUCCESS
If an Error (Bit 7 set) or a Warning occurred the Error Code will be returned in AX, the FLAGS and all other
registers will be preserved.

Example:

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 8 of 49 27 August, 1996

The following example illustrates how the ‘C’ style call interface could be made from an assembly language module:

push BiosSelector
push segment/selector of dmiStorageSize ; Pointer to DMIStorageSize
push offset of dmiStorageSize
push segment/selector of dmiStorageBase ; Pointer to DMIStorageBase
push offset of dmiStorageBase
push segment/selector of StructureSize ; Pointer to StructureSize
push offset of StructureSize
push segment/selector of NumStructures ; Pointer to NumStructures
push offset NumStructures
push segment/selector of dmiBIOSRevision ; Pointer to DMIBIOSRevision
push offset dmiBIOSRevision
push GET_DMI_INFORMATION ; Function number, 50h
call FAR PTR entryPoint
add sp, 24 ; Clean up stack
cmp ax, DMI_SUCCESS ; Function completed successfully?
jne error

2.4.2 Function 51h – Get DMI Structure

Synopsis:
short FAR (*entryPoint)(Function, Structure, dmiStrucBuffer, dmiSelector, BiosSelector);
short Function; /* PnP BIOS Function 51h */
unsigned short FAR *Structure; /* Structure number/handle to retrieve*/
unsigned char FAR *dmiStrucBuffer; /* Pointer to buffer to copy structure data to */
unsigned short dmiSelector; /* DMI data read/write selector */
unsigned short BiosSelector; /* PnP BIOS readable/writable selector */

Description:
Required for DMI BIOS Support. This function will copy the information for the specified DMI Structure into the
buffer specified by the caller. The Structure argument is a pointer to the unique DMI Structure number (handle). If
Structure contains zero, the system BIOS will return the first DMI Structure. The dmiStrucBuffer argument contains
the pointer to the caller’s memory buffer. If the function returns either DMI_SUCCESS or DMI_INVALID_HANDLE,
Structure is updated with either the next sequential structure handle or the end-of-list indicator 0FFFFh.

The protected-mode read/write selector dmiSelector has base equal to dmiStorageBase and limit of at least
dmiStorageSize — so long as the dmiStorageBase value returned from Function 50h was non-zero.

The BiosSelector parameter enables the system BIOS, if necessary, to update system variables that are contained in
the system BIOS memory space. If this function is called from protected mode, the caller must create a data segment
descriptor using the 16-bit Protected Mode data segment base address specified in the Plug and Play Installation
Check data structure, a limit of 64KB, and the descriptor must be read/write capable. If this function is called from
real mode, BiosSelector should be set to the Real mode 16-bit data segment address as specified in the Plug and Play
Installation Check Structure. Refer to section 4.4 of the Plug and Play BIOS Specification revision 1.0a for more
information on the Plug and Play Installation Check Structure and the elements that make up the structure.

This function is available in real mode and 16-bit protected mode.

Returns:
If successful - DMI_SUCCESS
If an Error (Bit 7 set) or a Warning occurred, the Error Code will be returned in AX, the FLAGS and all other
registers will be preserved

Example:
The following example illustrates how the ‘C’ style call interface could be made from an assembly language module:

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 9 of 49 27 August, 1996

push BiosSelector
push dmiSelector
push segment/selector of dmiStrucBuffer ; Pointer to dmiStrucBuffer
push offset of dmiStrucBuffer
push segment/selector of Structure ; Pointer to Structure
push offset of Structure
push GET_ DMI_STRUCTURE ; Function number, 51h
call FAR PTR entryPoint
add sp, 14 ; Clean up stack
cmp ax, DMI_SUCCESS ; Function completed successfully?
jne error

2.4.3 Function 52h – Set DMI Structure

Synopsis:
short FAR (*entryPoint)(Function, dmiDataBuffer, dmiWorkBuffer, Control, dmiSelector, BiosSelector)
short Function; /* PnP BIOS Function 52h */
unsigned char FAR *dmiDataBuffer; /* Pointer to buffer containing new/change data */
unsigned char FAR *dmiWorkBuffer; /* Pointer to work buffer area for the BIOS */
unsigned char Control; /* Conditions for performing operation */
unsigned short dmiSelector; /* DMI data read/write selector */
unsigned short BiosSelector; /* PnP BIOS readable/writeable selector */

Description:
Optional. This function will set the DMI structure identified by the type (and possibly handle) found in the DMI
structure header in the buffer pointed to by dmiDataBuffer. Values that the BIOS allows to be set in the supplied
structure will either be updated by the call, or will cause the BIOS to perform some defined action (such as enabling a
hardware option, etc.).

 Unless otherwise specified, all structures and structure values defined in Section 3, DMI BIOS Structures, are read-
only and cannot be set. Attempts to set these structures will return a DMI_READ_ONLY error. A structure field that
is composed of read/write and read-only subfields can still be set -- so long as the read-only portion of the field is
unmodified. Attempting to write to a read-only subfield will also cause a DMI_READ_ONLY to be returned.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 10 of 49 27 August, 1996

The dmiDataBuffer parameter references a structure of the following format:

Offset Field Length Description

00h Command BYTE Identifies the structure-setting operation to be performed, one of:

00h A single byte of information is to be changed in the structure
identified by StructureHeader

01h A word (two bytes) of information is to be changed in the
structure identified by StructureHeader

02h A double-word (four bytes) of information is to be changed in
the structure identified by StructureHeader

03h The structure identified by StructureHeader is to be added to
the DMI structure pool

04h The structure identified by StructureHeader is to be deleted from
the DMI structure pool

05h A string’s value is to be changed in the structure identified by
StructureHeader.

06h-0FFh Reserved for future assignment by this specification.

01h FieldOffset BYTE For a structure change Command, identifies the starting offset within the
changed structure’s fixed data of the to-be-changed item. For a string-
value change Command, identifies the offset within the structure’s fixed
data associated with the string’s “number”. This field is ignored for all
other Commands.

02h ChangeMask DWORD For a structure-change Command, identifies the ANDing mask to be
applied to the existing structure data prior to applying the ChangeValue.
The number of significant bytes within this area is defined by the
Command. This field is ignored for all other Commands.

06h ChangeValue DWORD For a structure-change Command, identifies the data value to be ORed
with the existing structure data – after applying the ChangeMask. The
number of significant bytes within this area is defined by the Command.
This field is ignored for all other Commands.

0Ah DataLength WORD For a structure-add Command, identifies the full length of the to-be-added
structure. The length includes the structure header, the fixed-length
portion of the structure, and any string data which accompanies the added
structure – including all null-terminators. For a string-value change
Command, identifies the length of the string data (including the null-
terminator); if the length is 1, the current string is deleted. This field is
ignored for all other Commands.

0Ch StructureHeader 4 BYTEs Contains the structure header (see Structure Header Format on page 22) of
the structure to be added, changed, or deleted.

10h StructureData Var For a structure-add Command, contains the data to be associated with the
DMI BIOS Structure identified by the StructureHeader. For a string-value
change Command, contains the string’s data (the number of characters is
identified by DataLength). This field is ignored for all other Commands.

The dmiWorkBuffer parameter references a work buffer for use by the BIOS in performing the request; the contents of
the buffer are destroyed by the BIOS’ processing. This work buffer must be read/write and sized to hold the entire
DMI structure pool, based on the maximum structure-size information (StructureSize * NumStructures) returned by
Function 50h – Get DMI Information (see page 7) plus the size of any structure to be added by the request.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 11 of 49 27 August, 1996

The Control flag provides a mechanism for indicating to the BIOS whether the set request is to take effect
immediately, or if this is a check to validate the to-be-updated data.

Control is defined as:

Bit 0 0 = Do not set the specified structure, but validate its parameters.
 1 = Set the structure immediately.

Bits 1:7 Reserved, must be 0.

If bit 0 of Control is 0, then the dmiDataBuffer values are checked for validity. If any are not valid, then the function
returns DMI_BAD_PARAMETER; if any read-only field is modified, the function returns DMI_READ_ONLY.
Validity checking is useful to determine if the BIOS supports setting a structure field to a particular value – or whether
the BIOS supports writing to a specific structure field. For example, it may be useful for an OEM to determine
beforehand whether the OEM's BIOS supports a "Reboot to Diagnostics Now" setting in an OEM-defined structure.

The protected-mode read/write selector dmiSelector has base equal to dmiStorageBase and a limit of at least
dmiStorageSize, so long as the dmiStorageBase returned from Function 50h – Get DMI Information was non-zero.

The BiosSelector parameter enables the system BIOS, if necessary, to update system variables that are contained in
the system BIOS memory space. If this function is called from protected mode, the caller must create a data segment
descriptor using the 16-bit Protected Mode data segment base address specified in the Plug and Play Installation
Check data structure, a limit of 64KB, and the descriptor must be read/write capable. If this function is called from
real mode, BiosSelector should be set to the Real mode 16-bit data segment address as specified in the Plug and Play
Installation Check Structure. Refer to section 4.4 of the Plug and Play BIOS Specification revision 1.0a for more
information on the Plug and Play Installation Check Structure and the elements that make up the structure.

This function is available in real mode and 16-bit protected mode.

Note: If the system BIOS supports structure-change notification, a structure-change event will be issued by the BIOS
upon its successful completion of a structure-setting (rather than validation) function call. See Structure Change
Notification Interface on page 12 for more information.

Returns:
If successful - DMI_SUCCESS
If an error occurred, the Error Code will be returned in AX. The FLAGS and all other registers will be preserved.

Errors:
DMI_BAD_PARAMETER A parameter contains an invalid or unsupported value.
DMI_READ_ONLY A parameter is read-only and differs from the present value –

an attempt was made to modify a read-only value.
DMI_ADD_STRUCTURE_FAILED The desired structure could not be added due to insufficient storage

space.
DMI_INVALID_HANDLE For an add (03h) Command, the structure handle present in the

StructureHeader already exists or, for a change (00h to 02h and 05h) or
delete (04h) Command, the structure handle does not exist.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 12 of 49 27 August, 1996

Example:
The following example illustrates how the 'C' style call interface could be made from an assembly language module:

push BiosSelector
push dmiSelector
push Control
push segment/selector of dmiWorkBuffer;pointer to BIOS temporary buffer
push offset of dmiWorkBuffer
push segment/selector of dmiDataBuffer ; pointer to structure
push offset of dmiDataBuffer
push SET_DMI_STRUCTURE ; Function number, 52h
call FAR PTR entryPoint
add sp, 16 ; clean stack
cmp ax, DMI_SUCCESS ; Successful?
jne error ; No, go handle error

2.5 Structure Change Notification Interface

Certain classes of systems may provide the capability for the addition or removal of system devices while the system
unit is powered on, such as inserting a Notebook unit into a Docking Station. System BIOS support is necessary for
providing DMI Structure Change Notification accessible to system software so that when devices are added or
removed the system software will comprehend any changes in the DMI BIOS Structures. Structure Change
Notification can be implemented as either a polled method or as asynchronous Plug-and-Play events. For information
on how Plug-and-Play event notification is accessed, see section 4.6 of the Plug and Play BIOS Specification revision
1.0a.

When system software is notified on an event by either mechanism, it can then call the BIOS runtime function (Plug and
Play BIOS Function 3 - Get Event) to get the type of event. In addition to the events defined in the Plug and Play BIOS
Specification, the following event has been defined.

Note: Some DMI structure values might be inherently changing (e.g. an OEM-specific structure which returns system
temperature and voltage values). Due to the frequency of the values’ change, the BIOS might not return Structure
Change status for this type of structure.

DMI_STRUCTURE_CHANGE_EVENT 7FFFh

This message indicates that there has been a change in the DMI Information being maintained by the System BIOS.
Upon receiving a DMI_STRUCTURE_CHANGE_EVENT, system software can call the BIOS runtime function 53h
(Get Structure Change Information) to determine the exact cause of the DMI structure-change event.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 13 of 49 27 August, 1996

2.5.1 Function 53h – Get Structure Change Information

Synopsis:
short FAR (*entryPoint)(Function, dmiChangeStructure, dmiSelector, BiosSelector);
short Function; /* PnP BIOS Function 53h */
unsigned char FAR *dmiChangeStructure; /* Pointer to DMI Change structure */
unsigned short dmiSelector; /* DMI data read/write selector */
unsigned short BiosSelector; /* PnP BIOS readable/writable selector */

Description:
Required for DMI BIOS Dynamic Structure Change Notification Support. This function will allow system software
to get information about what type of DMI structure-change occurred. The DMI structure-change information will be
returned in the 16-byte memory buffer pointed to by dmiChangeStructure in the following format:

Field Offset Length Value
DMI Change Status 00h BYTE ENUM
DMI Change Type 01h BYTE Bit Field
DMI Structure Handle 02h WORD Varies
Reserved 04h-0Fh 12 BYTEs 00h

DMI Change Status:
00h No Change
01h Other
02h Unknown
03h Single DMI Structure Affected
04h Multiple DMI Structures Affected
05h - 0FFh Reserved

DMI Change Type:
Bit 0 One or more structures was changed, when 1.
Bit 1 One or more structures was added, when 1. See “Function 52h – Set DMI Structure”

for information about adding DMI structures.
Byte 2:7 Reserved, must be 0

If DMI Change Status 03h (Single Structure Affected) is returned, the number (or handle) of the affected structure is
present in the "DMI Structure Handle" field; DMI Change Type identifies whether the structure was changed (01h) or
added (02h).

If DMI Change Status 04h (Multiple DMI Structures Affected) is returned, the caller must enumerate all the structures
to determine what was changed and/or added. DMI Change Type identifies whether multiple structures were changed
(01h), multiple structures were added (02h), or structures were both changed and added (03h).

The DMI Change Status Byte remains valid until Function 53h is called. The calling of Function 53h will reset the
DMI Change Status Byte to be reset to zero. If the call is issued in the absence of a DMI event, the function returns
error code 86h (DMI_NO_CHANGE).

The protected-mode read/write selector dmiSelector has base equal to dmiStorageBase and limit of at least
dmiStorageSize — so long as the dmiStorageBase value returned from Function 50h was non-zero.

The BiosSelector parameter enables the system BIOS, if necessary, to update system variables that are contained in
the system BIOS memory space. If this function is called from protected mode, the caller must create a data segment
descriptor using the 16-bit Protected Mode data segment base address specified in the Plug and Play Installation
Check data structure, a limit of 64KB, and the descriptor must be read/write capable. If this function is called from

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 14 of 49 27 August, 1996

real mode, BiosSelector should be set to the Real mode 16-bit data segment address as specified in the Plug and Play
Installation Check Structure. Refer to section 4.4 of the Plug and Play BIOS Specification revision 1.0a for more
information on the Plug and Play Installation Check Structure and the elements that make up the structure.

This function is available in real mode and 16-bit protected mode.

Returns:
If successful - DMI_SUCCESS
If an Error (Bit 7 set) or a Warning occurred the Error Code will be returned in AX, the FLAGS and all other
registers will be preserved

Example:
The following example illustrates how the ‘C’ style call interface could be made from an assembly language module:

push BiosSelector
push dmiSelector
push segment/selector of dmiChangeStructure
push offset of dmiChangeStructure
push GET_ DMI_STRUCTURE_CHANGE_INFO; Function number, 53h
call FAR PTR entryPoint
add sp, 10 ; Clean up stack
cmp ax, DMI_SUCCESS ; Function completed successfully?
jne error

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 15 of 49 27 August, 1996

2.6 Control Interface

2.6.1 Function 54h – DMI Control

Synopsis:
short FAR (*entryPoint)(Function, SubFunction, Data, Control, dmiSelector, BiosSelector)
short Function; /* PnP BIOS Function 54h */
short SubFunction; /* Defines the specific control operation */
void FAR *Data; /* Input/output data buffer, SubFunction specific */
unsigned char Control; /* Conditions for setting the structure */
unsigned short dmiSelector; /* DMI data read/write selector */
unsigned short BiosSelector; /* PnP BIOS readable/writeable selector */

Description:
Optional. This function provides the interface to perform implementation-specific functions for the system, as defined
by the SubFunction parameter and its (optional) Data values.

SubFunction Name Description
0000h DMI_CLEAR_EVENT_LOG Clears the event log as described in System Event Log (Type 15)

on page 45. The Data parameter is reserved and must be set to 0.
0001h DMI_CONTROL_LOGGING Data points to a 2-word (4-byte) buffer that describes how to

control event logging – see 2.6.2 for bit-wise definitions. The
first word (offset 0:1) identifies the ANDing mask to be applied
to the existing log-control value prior to ORing the second word
(offset 2:3). The second word is modified by the BIOS to
contain the log-control value on entry to this function.

0002h-3FFFh Reserved Reserved for future definition by this specification.
4000h-7FFFh Reserved for BIOS vendor Available for use by the BIOS vendor.
8000h-FFFFh Reserved for system vendor Available for use by the system vendor.

Note: A BIOS might support the Log Control function but not support all the SubFunction values.

The Control flag provides a mechanism for indicating to the BIOS whether the operation is to be performed
immediately, or if this is a check to validate the operation’s availability and/or data.

Control is defined as:

Bit 0 0 = Do not perform the operation, but validate its parameters.
 1 = Perform the operation immediately.
Bits 1:7 Reserved, must be 0.

If bit 0 of Control is 0, then the SubFunction and contents of Data are checked for validity. If any are not valid, then
the function returns DMI_BAD_PARAMETER. Validity checking is useful to determine if the BIOS supports a
specific DMI Control SubFunction.

The protected-mode read/write selector dmiSelector has base equal to dmiStorageBase and limit of at least
dmiStorageSize — so long as the dmiStorageBase value returned from Function 50h was non-zero.

The BiosSelector parameter enables the system BIOS, if necessary, to update system variables that are contained in
the system BIOS memory space. If this function is called from protected mode, the caller must create a data segment
descriptor using the 16-bit Protected Mode data segment base address specified in the Plug and Play Installation
Check data structure, a limit of 64KB, and the descriptor must be read/write capable. If this function is called from
real mode, BiosSelector should be set to the Real mode 16-bit data segment address as specified in the Plug and Play

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 16 of 49 27 August, 1996

Installation Check Structure. Refer to section 4.4 of the Plug and Play BIOS Specification revision 1.0a for more
information on the Plug and Play Installation Check Structure and the elements that make up the structure.

This function is available in real mode and 16-bit protected mode.

Returns:
If successful - DMI_SUCCESS
If an error occurred, the Error Code will be returned in AX. The FLAGS and all other registers will be preserved.

Errors:
DMI_BAD_PARAMETER The Data contents were not valid for the requested SubFunction.

DMI_INVALID_SUBFUNCTION The SubFunction requested is not supported by the system BIOS.

Example:
The following example illustrates how the 'C' style call interface could be made from an assembly language module:

push BiosSelector
push dmiSelector
push Control
push segment/selector of Data ; pointer to SubFunction data
push offset of Data
push SubFunction
push DMI_CONTROL ; Function number, 54h
call FAR PTR entryPoint
add sp, 14 ; clean stack
cmp ax, DMI_SUCCESS ; Successful?
jne error ; No, go handle error

2.6.2 DMI_CONTROL_LOGGING Control Word

Word Bit Position Meaning if Set
0 Enable Event Logging (overall)
1 Enable Correctable Memory Error Events’ Logging
2 - 15 Reserved for future assignment by this specification.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 17 of 49 27 August, 1996

2.7 General Purpose Nonvolatile Storage Interface

A General-Purpose NonVolatile (GPNV) area is a persistent general-purpose storage area managed by the Desktop
Management BIOS. Multiple GPNV areas can be supported by a particular BIOS implementation. The size, format
and location of a GPNV are not defined by this specification nor is the number of GPNV areas — these attributes are
OEM-specific.

A GPNV storage area is not a requirement for a Desktop Management BIOS. It is one method that might be used to
store the System Event Log (see section 3.2.16, page 45). A GPNV storage area is not necessarily dedicated to the
Desktop Management functions of the BIOS, it can also be used by other services which require non-volatile storage.

A Handle parameter is passed into the GPNV function calls to specify which GPNV area is to be accessed. The
Handle for the first GPNV area is 0, with remaining GPNV areas identified by Handle values 1, 2, 3... n, where (n+1)
is the total number of GPNV areas supported by a particular BIOS implementation.

A GPNVLock parameter provides a mechanism for cooperative use of the GPNV. The GPNVLock value is set on a
Read GPNV request (function 56h) and cleared on a Write GPNV request (function 57h). The BIOS compares the
value of the GPNVLock which is set on a Read GPNV request with the value of the GPNVLock passed as a parameter
into the GPNV Write request — if they match, the GPNV Write request succeeds and the GPNV data area will be
updated on completion of the GPNV Write; if the lock values do not match, the BIOS does not update the GPNV area
and DMI_CURRENTLY_LOCKED is returned. Note: GPNV locks are held until unlocked, even through system
power and reboot cycles. The method used to preserve the GPNV Locks through boot cycles is left up to the system
designer.

A BIOS might choose to “hide” a GPNV area by defining a special lock value which is required to access the area. In
this case, the special GPNVLock value must be supplied with the GPNV read and write requests or the function is
failed by the BIOS with DMI_INVALID_LOCK.

A lock set request succeeds when there is no outstanding lock set at the time that the Read GPNV request (Function
56h) is made. A lock set request fails when there is already a lock set as the result of a previous Read GPNV request
(which has not yet been cleared with a Function 57h Write GPNV request) or when a predefined lock value is
required in order to access a particular GPNV area and the GPNVLock value provided by the caller does not match
the required value.

The BIOS makes no attempt to enforce mutually-exclusive access to the GPNV — it is up to callers of GPNV Read to
ensure unique GPNVLock values (e.g. process ID).

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 18 of 49 27 August, 1996

2.7.1 Function 55H – Get General-Purpose NonVolatile Information

Synopsis:
short FAR (*entryPoint)(Function, Handle, MinGPNVRWSize, GPNVSize, NVStorageBase,

 BiosSelector);
short Function; /* PnP BIOS Function 55h */
unsigned short FAR *Handle; /* Identifies which GPNV to access */
unsigned short FAR *MinGPNVRWSize; /* Minimum buffer size in bytes for accessing GPNV */
unsigned short FAR *GPNVSize; /* Size allocated for GPNV within the R/W Block */
unsigned long FAR *NVStorageBase; /* 32-bit physical base address for... */

/* ... mem. mapped nonvolatile storage media */
unsigned short BiosSelector; /* PnP BIOS readable/writable selector */

Description: Required for GPNV support. This function returns information about a General Purpose NonVolatile
(GPNV) area. The Handle argument is a pointer to a number that identifies which GPNV’s information is requested, a
value of 0 accesses the first (or only) area.
On return:
*Handle is updated either with the handle of the next GPNV area or, if there are no more areas, 0FFFFh.

GPNV handles are assigned sequentially by the system, from 0 to the total number of areas (minus 1).
*MinGPNVRW Size is updated with the minimum size, in bytes, of any buffer used to access this GPNV

area. For a Flash based GPNV area, this would be the size of the Flash block containing the actual
GPNV.

*GPNVSize is updated with the size, in bytes, of this GPNV area (which is less than or equal to the
MinGPNVRWSize value).

*NVStorageBase is updated with the paragraph-aligned, 32-bit absolute physical base address of this
GPNV. If non-zero, this value allows the caller to construct a 16-bit data segment descriptor with a
limit of MinGPNVRWSize and read/write access. If the value is 0, protected-mode mapping is not
required for this GPNV.

Returns:
If successful - DMI_SUCCESS
If an Error (Bit 7 set) or a Warning occurred the Error Code will be returned in AX, the FLAGS and all other
registers will be preserved

Example:
The following example illustrates how the ‘C’ style call interface could be made from an assembly language module:

push BiosSelector
push segment/selector of NVStorageBase
push offset of NVStorageBase
push segment/selector of GPNVSize
push offset of GPNVSize
push segment/selector of MinGPNVRWSize
push offset of MinGPNVRWSize
push segment/selector of Handle
push offset of Handle
push GET_GPNV_INFORMATION ; Function number, 55h
call FAR PTR entryPoint
add sp, 20 ; Clean up stack
cmp ax, DMI_SUCCESS ; Function completed successfully?
jne error

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 19 of 49 27 August, 1996

2.7.2 Function 56H – Read General-Purpose NonVolatile Data

Synopsis:
short FAR (*entryPoint)(Function, Handle, GPNVBuffer, GPNVLock, GPNVSelector, BiosSelector);
short Function; /* PnP BIOS Function 56h */
unsigned short Handle; /* Identifies which GPNV is to be read */
unsigned char FAR *GPNVBuffer; /* Address of buffer in which to return GPNV */
short FAR *GPNVLock; /* Lock value */
unsigned short GPNVSelector; /* Selector for GPNV Storage */
unsigned short BiosSelector; /* PnP BIOS readable/writable selector */

Description: Required for GPNV support. This function is used to read an entire GPNV area into the buffer
specified by GPNVBuffer. It is the responsibility of the caller to ensure that GPNVBuffer is large enough to store the
entire GPNV storage block - this buffer must be at least the MinGPNVRWSize returned by Function 55h - Get GPNV
Information. The Handle argument identifies the specific GPNV to be read. On a successful read of a GPNV area, that
GPNV area will be placed in the GPNVBuffer beginning at offset 0. The protected-mode selector GPNVSelector has
base equal to NVStorageBase and limit of at least MinGPNVRWSize — so long as the NVStorageBase value returned
from Function 55h was non-zero.

Passing a GPNVLock value of -1 to the GPNV Read causes the GPNVLock value to be ignored — in this case the
underlying logic makes no attempt to store a lock value for comparison with lock values passed into GPNV Write.
Any value provided for GPNVLock besides -1 is accepted as a valid value for a lock request.

Returns:
If the GPNV lock is supported and the lock set request succeeds, the caller’s GPNVLock is set to the value of the
current lock and the function returns DMI_SUCCESS.

If the GPNV request fails, one of the following values is returned:
• DMI_ LOCK_NOT_SUPPORTED
• DMI_ INVALID_LOCK
• DMI_ CURRENTLY_LOCKED

For return status codes DMI_SUCCESS, DMI_LOCK_NOT_SUPPORTED and DMI_CURRENTLY_LOCKED, the
GPNV Read function returns the current contents of the GPNV associated with Handle as the first GPNVSize bytes
within GPNVBuffer, starting at offset 0. If a lock request fails with DMI_CURRENTLY_LOCKED status, the caller’s
GPNVLock will be set to the value of the current lock.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 20 of 49 27 August, 1996

Example:
The following example illustrates how the ‘C’ style call interface could be made from an assembly language module:

push BiosSelector
push GPNVSelector
push segment/selector of GPNVLock
push offset of GPNVLock
push segment/selector of GPNVBuffer
push offset of GPNVBuffer
push Handle
push READ_GPNV_DATA ; Function number, 56h
call FAR PTR entryPoint
add sp, 16 ; Clean up stack
cmp ax, DMI_SUCCESS ; Function completed successfully?
jne error

2.7.3 Function 57H – Write General-Purpose NonVolatile Data

Synopsis:
short FAR (*entryPoint)(Function, Handle, GPNVBuffer, GPNVLock, GPNVSelector, BiosSelector);
short Function; /* PnP BIOS Function 57h */
unsigned short Handle; /* Identifies which GPNV is to be written */
unsigned char FAR *GPNVBuffer; /* Address of buffer containing complete GPNV to write*/
short GPNVLock; /* Lock value */
unsigned short GPNVSelector; /* Selector for GPNV Storage */
unsigned short BiosSelector; /* PnP BIOS readable/writable selector */

Description: Required for GPNV support. This function is used to write an entire GPNV from the GPNVBuffer
into the nonvolatile storage area. The Handle argument identifies the specific GPNV to be written. The protected-
mode selector GPNVSelector has base equal to NVStorageBase and limit of at least MinGPNVRWSize — so long as
the NVStorageBase value returned from Get GPNV Information was non-zero. The caller should first call Read
GPNV Data (with a lock) to get the current area contents, modify the data, and pass it into this function — this ensures
that the GPNVBuffer which is written contains a complete definition for the entire GPNV area. If the BIOS uses some
form of block erase device, the caller must also allocate enough buffer space for the BIOS to store all data from the
part during the reprogreamming operation, not just the data of interest.

The data to be written to the GPNV selected by Handle must reside as the first GPNVSize bytes of the GPNVBuffer.
Note: The remaining (MinGPNVRWSize-GPNVSize) bytes of the GPNVBuffer area are used as a scratch-area by the
BIOS call in processing the write request; the contents of that area of the buffer are destroyed by this function call.

The GPNVLock provides a mechanism for cooperative use of the GPNV, and is set during a GPNV Read (Function
56h). If the input GPNVLock value is -1 the caller requests a forced write to the GPNV area, ignoring any outstanding
GPNVLock. If the caller is not doing a forced write, the value passed in GPNVLock to the GPNV Write must be the
same value as that (set and) returned by a previous GPNV Read (Function 56h).

Returns:
The GPNV Write function returns a value of DMI_ LOCK_NOT_SUPPORTED when a GPNVLock value other than -1
is specified and locking is not supported. A return status of DMI_ CURRENTLY_LOCKED indicates that the call has
failed due to an outstanding lock on the GPNV area which does not match the caller’s GPNVLock value. Any
outstanding GPNVLock value (which was set by a previous Function 56H – Read General-Purpose NonVolatile
Data) gets cleared on a successful write of the GPNV.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 21 of 49 27 August, 1996

Example:
The following example illustrates how the ‘C’ style call interface could be made from an assembly language module:

push BiosSelector
push GPNVSelector
push GPNVLock
push segment/selector of GPNVBuffer
push offset of GPNVBuffer
push Handle
push WRITE_GPNV_DATA ; Function number, 57h
call FAR PTR entryPoint
add sp, 14 ; Clean up stack
cmp ax, DMI_SUCCESS ; Function completed successfully?
jne error

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 22 of 49 27 August, 1996

3. DMI BIOS Structures
The total number of structures can be obtained through the Get DMI Information function (see 2.4.1 on page 7). The
System Information is presented to an application as a set of structures that are obtained by calling the Get DMI
Structure function once per structure (see 2.4.2 on page 8).

Note: All numbers are in decimal format unless otherwise indicated.
‘h’ indicates hexadecimal format.
‘b’ indicates binary format

3.1 Structure Standards

Each DMI structure has a formatted section and an optional unformed section. The formatted section of each structure
begins with a 4-byte header. Remaining data in the formatted section is determined by the structure type, as is the
overall length of the formatted section. The unformed section of the structure is used for passing variable data such as
text strings, see 3.1.2 Text Strings for more information.

3.1.1 Structure Header Format

Each DMI BIOS structure begins with a 4-byte header, as follows:

Offset Name Length Description
00h Type BYTE Specifies the type of structure. Types 0 through 127 (7Fh) are

reserved for and defined by this specification. Types 128
through 256 (80h to FFh) are available for system- and OEM-
specific information.

01h Length BYTE Specifies the length of the formatted area of the structure,
starting at the Type field. The length of the structure’s string-set
is not included.

02h Handle WORD Specifies the structure’s handle, a unique 16-bit number in the
range 0 to 0FFFEh. The handle can be used with the Get DMI
Structure function to retrieve a specific structure; the handle
numbers are not required to be contiguous.
If the system configuration changes, a previously assigned
handle might no longer exist. However once a handle has been
assigned by the BIOS, the BIOS cannot not re-assign that handle
number to another structure.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 23 of 49 27 August, 1996

3.1.2 Text Strings

Text strings associated with a given DMI structure are returned in the dmiStrucBuffer, appended directly after the
formatted portion of the structure. This method of returning string information eliminates the need for application
software to deal with pointers embedded in the DMI structure. Each string is terminated with a null (00h) BYTE and
the set of strings is terminated with an additional null (00h) BYTE. When the formatted portion of a DMI structure
references a string, it does so by specifying a non-zero string number within the structure’s string-set. For example, if
a string field contains 02h, it references the second string following the formatted portion of the DMI structure. If a
string field references no string, a null (0) is placed in that string field. If the formatted portion of the structure
contains string-reference fields and all the string fields are set to 0 (no string references), the formatted section of the
structure is followed by two null (00h) BYTES.

Note: Each text string is limited to 64 significant characters due to system MIF limitations.

Example: BIOS Information

BIOS_Info LABEL BYTE
db 0 ; Indicates BIOS Structure Type
db 12h ; Length of information in bytes
dw ? ; Reserved for handle
db 01h ; String 1 is the Vendor Name
db 02h ; String 2 is the BIOS version
dw 0E800h ; BIOS Starting Address
db 03h ; String 3 is the BIOS Build Date
dq BIOS_Char ; BIOS Characteristics
db 1 ; Size of BIOS ROM is 128K (64K * (1 + 1))
db ‘System BIOS Vendor Name’,0 ;
db ‘Version 4.04’,0 ;
db ‘00/00/00’,0 ;
db 0 ; End of strings

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 24 of 49 27 August, 1996

3.2 Structure Definitions

3.2.1 BIOS Information (Type 0)

Offset Name Length Value Description
00h Type BYTE 0 BIOS Information Indicator
01h Length BYTE Varies 12h + number of BIOS Characteristics

Extension Bytes. If no Extension Bytes are used
the Length will be 12h.

02h Handle WORD Varies
04h Vendor BYTE Varies String number of the BIOS Vendor’s Name
05h BIOS Version BYTE Varies String number of the BIOS Version. This is a

free form string which may contain Core and
OEM version information.

06h BIOS Starting
Address
Segment

WORD Varies Segment location of BIOS starting address,
e.g.0E800h. Note: The size of the runtime BIOS
image can be computed by subtracting the
Starting Address Segment from 10000h and
multiplying the result by 16.

08h BIOS Release
Date

BYTE Varies String number of the BIOS release date. The
date string, if supplied, is in the format
mm/dd/yy.

09h BIOS ROM
Size

BYTE Varies (n) Size (n) is 64K * (n+1)

0Ah BIOS
Characteristics

QWORD Bit Field Defines which functions the BIOS supports.
PCI, PCMCIA, Flash, etc. See 3.2.1.1.

12h BIOS
Characteristics
Extension Bytes

Zero or
more BYTEs

Bit Field Optional space reserved for future supported
functions. The number of Extension Bytes that
are present is indicated by the Length in offset 1
minus 12h.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 25 of 49 27 August, 1996

3.2.1.1 BIOS Characteristics

QWORD
Bit Position

Meaning if Set

Bit 0 Reserved
Bit 1 Reserved
Bit 2 Unknown
Bit 3 BIOS Characteristics Not Supported
Bit 4 ISA is supported
Bit 5 MCA is supported
Bit 6 EISA is supported
Bit 7 PCI is supported
Bit 8 PCMCIA is supported
Bit 9 Plug and Play is supported
Bit 10 APM is supported
Bit 11 BIOS is Upgradeable (Flash)
Bit 12 BIOS shadowing is allowed
Bit 13 VL-VESA is supported
Bit 14 ESCD support is available
Bit 15 Boot from CD is supported
Bit 16 Selectable Boot is supported
Bit 17 BIOS ROM is socketed
Bit 18 Boot From PCMCIA is supported
Bit 19 EDD (Enhanced Disk Drive) Specification is supported
Bit 20 Int 13h - Japanese Floppy for NEC 9800 1.2mb (3.5”, 1k Bytes/Sector, 360 RPM) is

supported
Bit 21 Int 13h - Japanese Floppy for Toshiba 1.2mb (3.5”, 360 RPM) is supported
Bit 22 Int 13h - 5.25” / 360 KB Floppy Services are supported
Bit 23 Int 13h - 5.25” /1.2MB Floppy Services are supported
Bit 24 Int 13h - 3.5” / 720 KB Floppy Services are supported
Bit 25 Int 13h - 3.5” / 2.88 MB Floppy Services are supported
Bit 26 Int 5h, Print Screen Service is supported
Bit 27 Int 9h, 8042 Keyboard services are supported
Bit 28 Int 14h, Serial Services are supported
Bit 29 Int 17h, Printer Services are supported
Bit 30 Int 10h, CGA Video Services are supported
Bit 31 PC-98

Bits32:47 Reserved for BIOS Vendor
Bits 48:63 Reserved for System Vendor

3.2.1.2 BIOS Characteristics Extension Byte 1

BYTE Bit
Position

Meaning if Set

Bits 7:0 Reserved, set to 0.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 26 of 49 27 August, 1996

3.2.2 System Information (Type 1)

The information in this structure defines attributes of the overall system and is intended to be associated with the
Component ID group of the system’s MIF.

Offset Name Length Value Description
00h Type BYTE 1 Component ID Information Indicator
01h Length BYTE 08h
02h Handle WORD Varies
04h Manufacturer BYTE Varies Number of Null terminated string
05h Product Name BYTE Varies Number of Null terminated string
06h Version BYTE Varies Number of Null terminated string
07h Serial Number BYTE Varies Number of Null terminated string

3.2.3 Base Board Information (Type 2)

The information in this structure defines attributes of the system’s baseboard (also known as the motherboard or
planar).

Offset Name Length Value Description
00h Type BYTE 2 Base Board Information Indicator
01h Length BYTE 08h
02h Handle WORD Varies
04h Manufacturer BYTE Varies Number of Null terminated string
05h Product BYTE Varies Number of Null terminated string
06h Version BYTE Varies Number of Null terminated string
07h Serial Number BYTE Varies Number of Null terminated string

3.2.4 System Enclosure or Chassis (Type 3)

The information in this structure defines attributes of the system’s mechanical enclosure(s). For example, if a system
included a separate enclosure for its peripheral devices, two structures would be returned: one for the main, system
enclosure and the second for the peripheral device enclosure.

Offset Name Length Value Description
00h Type BYTE 3 System Enclosure Indicator
01h Length BYTE 09h
02h Handle WORD Varies
04h Manufacturer BYTE Varies Number of Null terminated string
05h Type BYTE Varies Bit 7 Chassis lock present if 1. Otherwise,

either a lock is not present or it is
unknown if the enclosure has a lock.

Bits 6:0 Enumeration value, see below.
06h Version BYTE Varies Number of Null terminated string
07h Serial Number BYTE Varies Number of Null terminated string
08h Asset Tag

Number
BYTE Varies Number of Null terminated string

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 27 of 49 27 August, 1996

3.2.4.1 System Enclosure or Chassis Types

Byte Value Meaning
01h Other
02h Unknown
03h Desktop
04h Low Profile Desktop
05h Pizza Box
06h Mini Tower
07h Tower
08h Portable
09h LapTop
0Ah Notebook
0Bh Hand Held
0Ch Docking Station
0Dh All in One
0Eh Sub Notebook
0Fh Space-saving
10h Lunch Box
11h Main Server Chassis
12h Expansion Chassis
13h SubChassis
14h Bus Expansion Chassis
15h Peripheral Chassis
16h RAID Chassis
17h Rack Mount Chassis

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 28 of 49 27 August, 1996

3.2.5 Processor Information (Type 4)

The information in this structure defines the attributes of a single processor; a separate structure instance is provided
for each system processor. For example, a system with an 80486DX processor would have a single structure instance
while a system with an 80486SX processor would have a structure to describe the main CPU and a second structure to
describe the 80487 co-processor.

Offset Name Length Value Description
00h Type BYTE 4 Processor Information Indicator
01h Length BYTE 1Ah
02h Handle WORD Varies
04h Socket

Designation
BYTE Varies String number for Reference Designation.

Example string ‘J202’,0
05h Processor Type BYTE ENUM See 3.2.5.1 on page 29
06h Processor

Family
BYTE ENUM See 3.2.5.2 on page 29

07h Processor
Manufacturer

BYTE Varies String number of Processor Manufacturer

08h Processor ID QWORD Varies Raw processor identification data. See 3.2.5.3
for details.

10h Processor
Version

BYTE Varies String number describing the Processor

11h Voltage BYTE Varies Bits 7:4 Reserved, must be zero
Bits 3:0 Voltage Capability. A Set bit indicates

the voltage is supported.
Bit 0 - 5V
Bit 1 - 3.3V
Bit 2 - 2.9V
Bit 3 - Reserved, must be zero.
Note: Setting of multiple bits
indicates the socket is configurable

12h External Clock WORD Varies External Clock Frequency. If the value is
unknown, the field is set to 0.

14h Max Speed WORD Varies 99d for a 99MHz processor. If the value is
unknown, the field is set to 0.

16h Current Speed WORD Varies Same as Max Speed
18h Status BYTE Varies Bit 7 Reserved, must be 0

Bit 6 CPU Socket Populated
1 - CPU Socket Populated
0- CPU Socket Unpopulated

Bits 5:3 Reserved, must be zero
Bits 2:0 CPU Status

0h - Unknown
1h - CPU Enabled
2h - CPU Disabled by User

(via BIOS Setup)
3h - CPU Disabled By System BIOS

(POST Error)
4h - CPU is Idle

(waiting to be Enabled)
5-6h - Reserved
7h - Other

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 29 of 49 27 August, 1996

Offset Name Length Value Description
19h Processor

Upgrade
BYTE ENUM See 3.2.5.4

3.2.5.1 Processor Information - Processor Type

Byte Value Meaning
01h Other
02h Unknown
03h Central Processor
04h Math Processor
05h DSP Processor
06h Video Processor

3.2.5.2 Processor Information - Processor Family

Byte Value Meaning
01h Other
02h Unknown
03h 8086
04h 80286
05h 80386
06h 80486
07h 8087
08h 80287
09h 80387
0Ah 80487
0Bh Pentium Family

0Ch-11h Reserved for specific Pentium versions
12h M1 Family

13h-18h Reserved for specific M1 versions
19h K5 Family

1Ah-1Fh Reserved for specific K5 versions
20h Power PC Family
A0h V30 Family

3.2.5.3 Processor ID Field Format

The Processor ID field contains processor-specific information which describes the processor’s features.

3.2.5.3.1 X86-Class CPUs

For x86 class CPUs, the field’s format depends on the processor’s support of the CPUID instruction. If the instruction
is supported, the Processor ID field contains two DWORD-formatted values. The first (offsets 08h-0Bh) is the EAX
value returned by a CPUID instruction with input EAX set to 1; the second (offsets 0Ch-0Fh) is the EDX value
returned by that instruction.

Otherwise, only the first two bytes of the Processor ID field are significant (all others are set to 0) and contain (in
WORD-format) the contents of the DX register at CPU reset.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 30 of 49 27 August, 1996

3.2.5.4 Processor Information - Processor Upgrade

Byte Value Meaning
01h Other
02h Unknown
03h Daughter Board
04h ZIF Socket
05h Replaceable Piggy Back
06h None
07h LIF Socket

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 31 of 49 27 August, 1996

3.2.6 Memory Controller Information (Type 5)

The information in this structure defines the attributes of the system’s memory controller(s) and the supported
attributes of any memory-modules present in the sockets controlled by this controller.

Offset Name Length Value Description
00h Type BYTE 5 Memory Controller Indicator
01h Length BYTE Varies 15 + (2 X Number of Associated Memory

Slots), offset 0Eh
02h Handle WORD Varies
04h Error

Detecting
Method

BYTE ENUM See 3.2.6.1

05h Error Correct-
ing Capability

BYTE Bit Field See 3.2.6.2

06h Supported
Interleave

BYTE ENUM See 3.2.6.3

07h Current
Interleave

BYTE ENUM See 3.2.6.3

08h Maximum
Memory
Module Size

BYTE Varies (n) The size of the largest memory module
supported (per slot), specified as n, where
2**n is the maximum size in MB. The
maximum amount of memory supported by this
controller is that value times the number of
slots, as specified in offset 0Eh of this structure.

09h Supported
Speeds

WORD Bit Field See 3.2.6.4 for bit-wise descriptions.

0Bh Supported
Memory Types

WORD Bit Field See 3.2.7.1 on page 33 for bit-wise
descriptions.

0Dh Memory
Module
Voltage

BYTE Varies This field describes the required voltages for
each of the memory module sockets controlled
by this controller:
Bits 7:3 Reserved, must be zero
Bit 2 2.9V
Bit 1 3.3V
Bit 0 5V
Note: Setting of multiple bits indicates the
sockets are configurable

0Eh Number of
Associated
Memory Slots

BYTE Varies Defines how many of the Memory Module
Information blocks are controlled by this
controller

0Fh+ Memory
Module
Configuration
Handle

WORD Varies A memory information structure index
controlled by this controller. Value in offset
0Eh defines the count.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 32 of 49 27 August, 1996

3.2.6.1 Memory Controller Error Detecting Method

Byte Value Meaning
01h Other
02h Unknown
03h None
04h 8-bit Parity
05h 32-bit ECC
06h 64-bit ECC
07h 128-bit ECC

3.2.6.2 Memory Controller Error Correcting Capability

Byte Bit
Position

Meaning

Bit 0 Other
Bit 1 Unknown
Bit 2 None
Bit 3 Single Bit Error Correcting
Bit 4 Double Bit Error Correcting
Bit 5 Error Scrubbing

3.2.6.3 Memory Controller Information - Interleave Support

Byte Value Meaning
01h Other
02h Unknown
03h One Way Interleave
04h Two Way Interleave
05h Four Way Interleave
06h Eight Way Interleave
07h Sixteen Way Interleave

3.2.6.4 Memory Controller Information - Memory Speeds

This bit-field describes the speed of the memory modules supported by the system.

Word Bit
Position

Meaning

Bit 0 Other
Bit 1 Unknown
Bit 2 70ns
Bit 3 60ns
Bit 4 50ns

Bits 5:15 Reserved, must be zero

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 33 of 49 27 August, 1996

3.2.7 Memory Module Information (Type 6)

One Memory Module Information structure is included for each memory-module socket in the system. The structure
describes the speed, type, size, and error status of each system memory module. The supported attributes of each
module are described by the “owning” Memory Controller Information structure.

Offset Name Length Value Description
00h Type BYTE 6 Memory Module Configuration Indicator
01h Length BYTE 0Ch
02h Handle WORD Varies
04h Socket

Designation
BYTE Varies String Number for Reference Designation.

Example ‘J202’,0
05h Bank

Connections
BYTE Varies Each nibble indicates a bank (RAS#)

connection, 0xF means no connection. Example:
If banks 1 & 3 (RAS# 1 & 3) were connected to
a SIMM socket the byte for that socket would
be 13h. If only bank 2 (RAS 2) were connected
the byte for that socket would be 2Fh.

06h Current Speed BYTE Varies The speed of the memory module, in ns (e.g.
70d for a 70ns module). If the speed is
unknown, the field is set to 0.

07h Current
Memory Type

WORD Bit Field See 3.2.7.1

09h Installed Size BYTE Varies See 3.2.7.2
0Ah Enabled Size BYTE Varies See 3.2.7.2
0Bh Error Status BYTE Varies Bits 7:2 Reserved, set to 0’s

Bit 1 Correctable errors received for the
module, if set

Bit 0 Uncorrectable errors received for
the module, if set. All or a portion of
the module has been disabled.

3.2.7.1 Memory Module Information - Memory Types

This bit-field describes the physical characteristics of the memory modules which are supported by (and currently
installed in) the system.

Word Bit
Position

Meaning

Bit 0 Other
Bit 1 Unknown
Bit 2 Standard
Bit 3 Fast Page Mode
Bit 4 EDO
Bit 5 Parity
Bit 6 ECC
Bit 7 SIMM
Bit 8 DIMM

Bits 9:15 Reserved, must be zero

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 34 of 49 27 August, 1996

3.2.7.2 Memory Module Information - Memory Size

The Size fields of the Memory Module Configuration Information structure define the amount of memory currently
installed (and enabled) in a memory-module connector.

The Installed Size fields identify the size of the memory module which is installed in the socket, as determined by
reading and correlating the module’s presence-detect information. If the system does not support presence-detect
mechanisms, the Installed Size field is set to 7Dh to indicate that the installed size is not determinable. The Enabled
Size field identifies the amount of memory currently enabled for the system’s use from the module. If a module is
known to be installed in a connector, but all memory in the module has been disabled due to error, the Enabled Size
field is set to 7Eh.

Byte Bit
Range

Meaning

Bits 0:6 Size (n), where 2**n is the size in MB with three special-case values:
7Dh Not determinable (Installed Size only)
7Eh Module is installed, but no memory has been enabled
7Fh Not installed

Bit 7 Defines whether the memory module has a single- (0) or double-bank (1) connection.

3.2.7.3 Memory Subsystem Example

A system utilizes a memory controller which supports up to 4-32MB 5V 70ns parity SIMMs. The memory module
sockets are used in pairs A1/A2 and B1/B2 to provide a 64-bit data path to the CPU. No mechanism is provided by
the system to read the SIMM IDs. RAS-0 and -1 are connected to the front- and back-size banks of the SIMMs in the
A1/A2 sockets and RAS-2 and -3 are similarly connected to the B1/B2 sockets. The current installation is an 8MB
SIMM in sockets A1 and A2, 16MB total.

db 5 ; Memory Controller Information
db 23 ; Length = 15 + 2*4
dw 14 ; Memory Controller Handle
db 4 ; 8-bit parity error detection
db 00000100b ; No error correction provided
db 03h ; 1-way interleave supported
db 03h ; 1-way interleave currently used
db 5 ; Maximum memory-module size supported is 32MB (2**5)
dw 00000100b ; Only 70ns SIMMs supported
dw 00A4h ; Standard, parity SIMMs supported
db 00000001b ; 5V provided to each socket
db 4 ; 4 memory-module sockets supported
dw 15 ; 1st Memory Module Handle
dw 16
dw 17
dw 18 ; 4th ...

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 35 of 49 27 August, 1996

db 6 ; Memory Module Information
db 0Ch
dw 15 ; Handle
db 1 ; Reference Designation string #1
db 01h ; Socket connected to RAS-0 and RAS-1
db 00000010b ; Current speed is Unknown, since can’t read SIMM IDs
db 00000100b ; Upgrade speed is 70ns, since that’s all that’s

; supported
dw 00A4h ; Current SIMM must be standard parity
db 7Dh ; Installed size indeterminable (no SIMM IDs)
db 83h ; Enabled size is double-bank 8MB (2**3)
db 0 ; No errors
db “A1”,0 ; String#1: Reference Designator
db 0 ; End-of-strings
db 6 ; Memory Module Information
db 0Ch
dw 16 ; Handle
db 1 ; Reference Designation string #1
db 01h ; Socket connected to RAS-0 and RAS-1
db 0 ; Current speed is Unknown, since can’t read SIMM IDs
dw 00A4h ; Current SIMM must be standard parity
db 7Dh ; Installed size indeterminable (no SIMM IDs)
db 83h ; Enabled size is double-bank 8MB (2**3)
db 0 ; No errors
db “A2”,0 ; String#1: Reference Designator
db 0 ; End-of-strings
db 6 ; Memory Module Information
db 0Ch
dw 17 ; Handle
db 1 ; Reference Designation string #1
db 23h ; Socket connected to RAS-2 and RAS-3
db 0 ; Current speed is Unknown, since can’t read SIMM IDs
dw 0001h ; Nothing appears to be installed (Other)
db 7Dh ; Installed size indeterminable (no SIMM IDs)
db 7Fh ; Enabled size is 0 (nothing installed)
db 0 ; No errors
db “B1”,0 ; String#1: Reference Designator
db 0 ; End-of-strings

db 6 ; Memory Module Information
db 0Ch
dw 18 ; Handle
db 1 ; Reference Designation string #1
db 23h ; Socket connected to RAS-2 and RAS-3
db 0 ; Current speed is Unknown, since can’t read SIMM IDs
dw 0001h ; Nothing appears to be installed (Other)
db 7Dh ; Installed size indeterminable (no SIMM IDs)
db 7Fh ; Enabled size is 0 (nothing installed)
db 0 ; No errors
db “B2”,0 ; String#1: Reference Designator
db 0 ; End-of-strings

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 36 of 49 27 August, 1996

3.2.8 Cache Information (Type 7)

The information in this structure defines the attributes of CPU cache device in the system. One structure is specified
for each such device, whether the device is internal to or external to the CPU module. Cache modules can be
associated with a processor structure, see 3.2.15 Group Associations (Type 14) on page 44 for more information.

Offset Name Length Value Description
00h Type BYTE 7 Cache Information Indicator
01h Length BYTE 0Fh
02h Handle WORD Varies
04h Socket

Designation
BYTE Varies String Number for Reference Designation

Example: “CACHE1”, 0
05h Cache

Configuration
WORD Varies Bits 15:10 Reserved, must be zero

Bits 9:8 Operational Mode
00b Write Through
01b Write Back
10b Varies with Memory Address
11b Unknown

Bit 7 Enabled/Disabled (at boot time)
1b Enabled
0b Disabled

Bits 6:5 Location, relative to the CPU module:
00b Internal
01b External
10b Reserved
11b Unknown

Bit 4 Reserved, must be zero
Bit 3 Cache Socketed

1b Socketed
0b Not Socketed

Bits 2:0 Cache Level - 1 through 8
07h Maximum

Cache Size
WORD Varies Maximum size that can be installed

Bit 15 Granularity
0 - 1K granularity
1 - 64K granularity

Bits 14:0 Max size in given granularity
09h Installed Size WORD Varies Same as Max Cache Size field
0Bh Supported

SRAM Type
WORD Bit Field See 3.2.8.1

0Dh Current SRAM
Type

WORD Bit Field See 3.2.8.1

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 37 of 49 27 August, 1996

3.2.8.1 Cache Information - SRAM Type

Word Bit
Position

Meaning

Bit 0 Other
Bit 1 Unknown
Bit 2 Non-Burst
Bit 3 Burst
Bit 4 Pipeline Burst
Bit 5 Synchronous
Bit 6 Asynchronous

Bits 7:15 Reserved, must be zero

3.2.9 Port Connector Information (Type 8)

The information in this structure defines the attributes of a system port connector, e.g. parallel, serial, keyboard, mouse
ports. The port’s type and connector information are provided. One structure is present for each port provided by the
system.

Offset Name Length Value Description
00h Type BYTE 8 Connector Information Indicator
01h Length BYTE 9h
02h Handle WORD Varies
04h Internal

Reference
Designator

BYTE Varies String number forInternal Reference Designator,
i.e. internal to the system enclosure, e.g. ‘J101’,
0

05h Internal
Connector Type

BYTE ENUM Internal Connector type. See 3.2.9.2

06h External
Reference
Designator

BYTE Varies String number for the External Reference
Designation external to the system enclosure,
e.g. ‘COM A’, 0

07h External
Connector Type

BYTE ENUM External Connector type. See 3.2.9.2

08h Port Type BYTE ENUM Describes the function of the port. See 3.2.9.3

3.2.9.1 Port Information Example

The following structure shows an example where a DB-9 Pin Male connector on the System Backpanel (COM A) is
connected to the System Board via a 9 Pin Dual Inline connector (J101).

db 8 ; Indicates Connector Type
db 9h ; Length
dw ? ; Reserved for handle
db 01h ; String 1 - Internal Reference Designation
db 18h ; 9 Pin Dual Inline
db 02h ; String 2 - External Reference Designation
db 08h ; DB-9 Pin Male
db 09h ; 16550A Compatible
db ‘J101’,0 ; Internal reference
db ‘COM A’,0 ; External reference
db 0

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 38 of 49 27 August, 1996

If an External Connector is not used (as in the case of a CD-ROM Sound connector) then the External Reference
Designator and the External Connector type should be set to zero. If an Internal Connector is not used (as in the case
of a soldered on Parallel Port connector which extends outside of the chassis) then the Internal Reference Designation
and Connector Type should be set to zero.

3.2.9.2 Port Information - Connector Types

Byte Value Meaning
00h None
01h Centronics
02h Mini Centronics
03h Proprietary
04h DB25 pin male
05h DB25 pin female
06h DB-15 pin male
07h DB-15 pin female
08h DB-9 pin male
09h DB9 pin female
0Ah RJ-11
0Bh RJ-45
0Ch 50 Pin MiniSCSI
0Dh Mini-DIN
0Eh Micro-DIN
0Fh PS/2
10h Infrared
11h HP-HIL
12h Access Bus
13h SSA SCSI
14h Circular DIN-8 male
15h Circular DIN-8 female
16h On Board IDE
17h On Board Floppy
18h 9 Pin Dual Inline (pin 10 cut)
19h 25 Pin Dual Inline (pin 26 cut)
1Ah 50 Pin Dual Inline
1Bh 68 Pin Dual Inline
1Ch On Board Sound Input from CD-ROM
1Dh Mini-Centronics Type-14
1Eh Mini-Centronics Type-26
A0h PC-98
A1h PC-98Hireso
A2h PC-H98
A3h PC-98Note
A4h PC-98Full
FFh Other - Use Reference Designator Strings to supply information.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 39 of 49 27 August, 1996

3.2.9.3 Port Types

Byte Value Meaning
00h None
01h Parallel Port XT/AT Compatible
02h Parallel Port PS/2
03h Parallel Port ECP
04h Parallel Port EPP
05h Parallel Port ECP/EPP
06h Serial Port XT/AT Compatible
07h Serial Port 16450 Compatible
08h Serial Port 16550 Compatible
09h Serial Port 16550A Compatible
0Ah SCSI Port
0Bh MIDI Port
0Ch Joy Stick Port
0Dh Keyboard Port
0Eh Mouse Port
0Fh SSA SCSI
10h USB
11h FireWire (IEEE P1394)
12h PCMCIA Type II
13h PCMCIA Type II
14h PCMCIA Type III
15h Cardbus
16h Access Bus Port
17h SCSI II
18h SCSI Wide
19h PC-98
1Ah PC-98-Hireso
1Bh PC-H98
A0h 8251 Compatible
A1h 8251 FIFO Compatible
0FFh Other

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 40 of 49 27 August, 1996

3.2.10 System Slots (Type 9)

The information in this structure defines the attributes of a system slot. One structure is provided for each slot in the
system.

Offset Name Length Value Description
00h Type BYTE 9 System Slot Structure Indicator
01h Length BYTE 0Ch
02h Handle WORD Varies
04h Slot Designation BYTE Varies String number for reference designation e.g.

‘PCI-1’,0
05h Slot Type BYTE ENUM See 3.2.10.1
06h Slot Data Bus Width BYTE ENUM See 3.2.10.2
07h Current Usage BYTE BYTE See 3.2.10.3

08h Slot Length BYTE ENUM See 3.2.10.4
09h Slot ID WORD Varies See 3.2.10.5
0Bh Slot Characteristics BYTE Bit Field See 3.2.10.6

3.2.10.1 System Slots - Slot Type

Byte Value Meaning
01h Other
02h Unknown
03h ISA
04h MCA
05h EISA
06h PCI
07h PCMCIA
08h VL-VESA
09h Proprietary
0Ah Processor Card Slot
0Bh Proprietary Memory Card Slot
0Ch I/O Riser Card Slot
0Dh NuBus
0Eh PCI - 66MHz Capable
A0h PC-98/C20
A1h PC/98/C24
A2h PC-98/E
A3h PC-98/Local Bus
A4h PC-98/Card

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 41 of 49 27 August, 1996

3.2.10.2 System Slots - Slot Data Bus Width

Byte Value Meaning
01h Other
02h Unknown
03h 8 bit
04h 16 bit
05h 32 bit
06h 64 bit
07h 128 bit

3.2.10.3 System Slots - Current Usage

Byte Value Meaning
01h Other
02h Unknown
03h Available
04h In use

3.2.10.4 System Slots - Slot Length

Byte Value Meaning
01h Other
02h Unknown
03h Half Length
04h Full Length

3.2.10.5 System Slots — Slot ID

The Slot ID field of the System Slot structure provides a mechanism to correlate the physical attributes of the slot to its
logical access method (which varies based on the Slot Type field). The Slot ID field has meaning only for the slot
types described below:

Slot Type Slot ID Field Meaning
MCA Identifies the logical Micro Channel slot number, in the range 1 to 15, in offset 09h. Offset

0Ah is set to 0.
EISA Identifies the logical EISA slot number, in the range 1 to 15, in offset 09h. Offset 0Ah is set to

0.
PCI Identifies the value present in the Slot Number field of the PCI Interrupt Routing table entry that

is associated with this slot, in offset 09h — offset 0Ah is set to 0. The table is returned by the
“Get PCI Interrupt Routing Options” BIOS function call.
Note: This definition also applies to the 66MHz-capable PCI slots.

PCMCIA Identifies the Adapter Number (offset 09h) and Socket Number (offset 0Ah) to be passed to
PCMCIA Socket Services to identify this slot.

3.2.10.6 Slot Characteristics

BYTE
Bit Position

Meaning if Set

Bit 0 Characteristics Unknown

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 42 of 49 27 August, 1996

BYTE
Bit Position

Meaning if Set

Bit 1 Provides 5.0 Volts
Bit 2 Provides 3.3 Volts
Bit 3 Slot’s opening is shared with another slot, e.g. PCI/EISA shared slot.

Bits 4:7 Reserved, must be 0

3.2.11 On Board Devices Information (Type 10)

The information in this structure defines the attributes of devices which are onboard (soldered onto) a system element,
usually the baseboard.

Offset Name Length Value Description
00h Type BYTE 10 On Board Devices Information Indicator
01h Length BYTE Varies 4 + (Number of Devices x 2)
02h Handle WORD Varies
04h Device 1 Type BYTE Varies Bit 7 Device 1 Status

 1 - Device Enabled
0 - Device Disabled

Bits 6:0 Type of Device (See 3.2.11.1)
05h Description

String
BYTE Varies String number of description

06h Device 2 Type BYTE Varies Bit 7 Device 2 Status
1 - Device Enabled
0 - Device Disabled

Bits 6:0 Type of Device (See 3.2.11.1)
07h Description

String
BYTE Varies String number of description

Note: This structure may contain the information on all onboard devices or there may be multiple instances of
it for multiple devices.

3.2.11.1 Onboard Device Types

Byte Value Meaning
01h Other
02h Unknown
03h Video
04h SCSI
05h Ethernet
06h Token Ring
07h Sound

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 43 of 49 27 August, 1996

3.2.12 OEM Strings (Type 11)

Offset Name Length Value Description
00h Type BYTE 11 OEM Strings Indicator
01h Length BYTE 5h
02h Handle WORD Varies
04h Count BYTE Varies Number of strings

This structure contains free form strings defined by the OEM. Examples of this are: Part Numbers for Reference
Documents for the system, contact information for the manufactuer, etc.

3.2.13 System Configuration Options (Type 12)

Offset Name Length Value Description
00h Type BYTE 12 Configuration Information Indicator
01h Length BYTE 5h
02h Handle WORD Varies
04h Count BYTE Varies Number of strings

This structure contains information required to configure the base board’s Jumpers and Switches.
Examples of this are: “JP2: 1-2 Cache Size is 256K, 2-3 Cache Size is 512K”

“SW1-1: Close to Disable On Board Video”

3.2.14 BIOS Language Information (Type 13)

The information in this structure defines the installable language attributes of the BIOS. If the structure is not included
within the BIOS DMI Information, the BIOS supports only English.

Offset Name Length Value Description
00h Type BYTE 13 Language Information Indicator
01h Length BYTE 16h
02h Handle WORD Varies
04h Installable

Languages
BYTE Varies Number of languages available. Each available

language will have a description string. i.e.
“English”. This field contains the number of
strings that follow.

05h Reserved 16 BYTEs 0 Reserved for future use
015h Current

Language
BYTE Varies String number (one-based) of the currently

installed language.

The strings describing the languages follow the Current Language byte. The format of the strings is:
 “ISO 639 Language Name | ISO 3166 Territory Name | Encoding Method”. See the example below.

Note: Refer to the Desktop Management Interface Specification, V1.0, Appendix A (ISO 639) and Appendix B (ISO
3166) for additional information.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 44 of 49 27 August, 1996

3.2.14.1 Example: BIOS Language Information

db 13 ; language information
db 16h ; length
dw ?? ; handle
db 3 ; three languages available
db 16 dup (0) ; reserved
db 2 ; current language is French Canadian
db ‘en|US|iso8859-1’ ; language 1 is US English
db ‘fr|CA|iso8859-1’ ; language 2 is French Canadian
db ‘ja|JP|unicode’ ; language 3 is Japanese

3.2.15 Group Associations (Type 14)

Offset Name Length Value Description
00h Type BYTE 14 Group Associations Indicator
01h Length BYTE Varies 5 + (3 bytes for each item in the group)
02h Handle WORD Varies
04h Group Name BYTE Varies String number of string describing the group
05h Item Type BYTE Varies Item (Structure) Type of this member
06h Item Handle WORD Varies Handle corresponding to this structure

The Group Associations structure is provided for OEMs who want to specify the arrangement or hierarchy of certain
components (including other Group Associations) within the system. For example, you can use the Group
Associations structure to indicate that two CPU’s share a common external cache system. These structures might look
as follows:

First Group Association Structure:
db 14 ; Group Association structure
db 11 ; Length
dw 28h ; Handle
db 01h ; String Number (First String)
db 04 ; CPU Structure
dw 08h ; CPU Structure’s Handle
db 07 ; Cache Structure
dw 09h ; Cache Structure’s Handle
db ‘Primary CPU Module’, 0
db 0

Second Group Association Structure:
db 14 ; Group Association structure
db 11 ; Length
dw 29h ; Handle
db 01h ; String Number (First String)
db 04 ; CPU Structure
dw 0Ah ; CPU Structure’s Handle
db 07 ; Cache Structure
dw 09h ; Cache Structure’s Handle
db ‘Secondary CPU Module’, 0
db 0

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 45 of 49 27 August, 1996

In the examples above, CPU structures 08h and 0Ah are associated with the same cache, 09h. This relationship could
also be specified as a single group:

db 14 ; Group Association structure
db 14 ; Length (5 + 3 * 3)
dw 28h ; Structure handle for Group Association
db 1 ; String Number (First string)
db 4 ; 1st CPU
dw 08h ; CPU structure handle
db 4 ; 2nd CPU
dw 0Ah ; CPU structure handle
db 7 ; Shared cache
dw 09h ; Cache structure handle
db ‘Dual-Processor CPU Complex’, 0
db 0

3.2.16 System Event Log (Type 15)

The presence of this structure within the DMI data returned for a system indicates that the system supports an event
log. An event log is a fixed-length area within a non-volatile storage element, starting with a fixed-length (and
vendor-specific) header record, followed by one or more variable-length log records. See 3.2.16.3 Event Log
Organization on page 48 for more information. Refer also to 2.6 Function 54h – DMI Control on page 15 for
interfaces which can be used to control the event-log.

An application can implement event-log change notification by periodically reading the System Event Log structure
(via its assigned handle) looking for a change in the Log Change Token. This token uniquely identifies the last time
the event log was updated. When it sees the token changed, the application can retrieve the entire event log and
determine the changes since the last time it read the event log.

Offset Name Length Value Description
00h Type BYTE 15 Event Log Type Indicator
01h Length BYTE 14h Length of the structure, including the Type and

Length fields..
02h Handle WORD Var The handle, or instance number, associated with

the record.
04h Log Area Length WORD Var The length, in bytes, of the overall event log

area, from the first byte of header to the last byte
of data.

06h Log Header
Start Offset

WORD Var Defines the starting offset (or index) within the
nonvolatile storage of the event-log’s header,
from the Access Method Address. For single-
byte indexed I/O accesses, the most-significant
byte of the start offset is set to 00h. If the log
area has no header, this field is set to 0.

08h Log Data Start
Offset

WORD Var Defines the starting offset (or index) within the
nonvolatile storage of the event-log’s first data
byte, from the Access Method Address. For
single-byte indexed I/O accesses, the most-
significant byte of the start offset is set to 00h.

Note: The data directly follows any header
information. Therefore, the header length can be
determined by subtracting the Header Start
Offset from the Data Start Offset.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 46 of 49 27 August, 1996

Offset Name Length Value Description
0Ah Access Method BYTE Var Defines the Location and Method used by

higher-level software to access the log area, one
of:

00h Indexed I/O: 1 8-bit index port, 1 8-bit
data port. The Access Method Address
field contains the 16-bit I/O addresses
for the index and data ports. See
3.2.16.1 for usage details.

01h Indexed I/O: 2 8-bit index ports, 1 8-bit
data port. The Access Method Address
field contains the 16-bit I/O address for
the index and data ports. See 3.2.16.1
for usage details.

02h Indexed I/O: 1 16-bit index port, 1 8-
bit data port. The Access Method
Address field contains the 16-bit I/O
address for the index and data ports.
See 3.2.16.1 for usage details.

03h Memory-mapped physical 32-bit
address. The Access Method Address
field contains the 4-byte (Intel
DWORD format) starting physical
address.

04h Available via General-Purpose
NonVolatile Data functions, see 2.7
on page 17 for more information.
The Access Method Address field
contains the 2-byte (Intel WORD
format) GPNV handle.

05h-FFh Available for future assignment
0Bh Log Status BYTE Var This bit-field describes the current status of the

system event-log:
Bits 7:2 Reserved, set to 0’s
Bit 1 Log area full, if 1
Bit 0 Log area valid, if 1

0Ch Log Change
Token

DWORD Var Unique token that is reassigned every time the
event log changes. Can be used to determine if
additional events have occurred since the last
time the log was read.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 47 of 49 27 August, 1996

Offset Name Length Value Description
10h Access Method

Address
DWORD Var The address associated with the access method;

the data present depends on the Access Method
field value. The area’s format can be described
by the following 1-byte-packed ‘C’ union:
union
 {
 struct
 {
 short IndexAddr;
 short DataAddr;
 } IO;
 long PhysicalAddr32;

 short GPNVHandle;

} AccessMethodAddress;

3.2.16.1 Indexed I/O Access Method

This section contains examples (in x86 assembly language) which detail the code required to access the “indexed I/O”
event-log information.

3.2.16.1.1 1 8-bit Index, 1 8-bit Data (00h)

To access the event-log, the caller selects 1 of 256 unique data bytes by

1) Writing the byte data-selection value (index) to the IndexAddr I/O address
2) Reading or writing the byte data value to (or from) the DataAddr I/O address

mov dx, IndexAddr ;Value from event-log structure
mov al, WhichLoc ;Identify offset to be accessed
out dx, al
mov dx, DataAddr ;Value from event-log structure
in al, dx ; Read current value

3.2.16.1.2 2 8-bit Index, 1 8-bit Data (01h)

To access the event-log, the caller selects 1 of 65536 unique data bytes by

1) Writing the least-significant byte data-selection value (index) to the IndexAddr I/O address
2) Writing the most-significant byte data-selection value (index) to the (IndexAddr+1) I/O address
3) Reading or writing the byte data value to (or from) the DataAddr I/O address

mov dx, IndexAddr ;Value from event-log structure
mov ax, WhichLoc ;Identify offset to be accessed
out dx, al ;Select LSB offset
inc dx
xchg ah, al
out dx, al ;Select MSB offset
mov dx, DataAddr ;Value from event-log structure
in al, dx ;Read current value

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 48 of 49 27 August, 1996

3.2.16.1.3 1 16-bit Index, 1 8-bit Data (02h)

To access the event-log, the caller selects 1 of 65536 unique data bytes by

1) Writing the word data-selection value (index) to the IndexAddr I/O address
2) Reading or writing the byte data value to (or from) the DataAddr I/O address

mov dx, IndexAddr ;Value from event-log structure
mov ax, WhichLoc ;Identify offset to be accessed
out dx, ax
mov dx, DataAddr ;Value from event-log structure
in al, dx ;Read current value

3.2.16.2 Access Method Address — DWORD Layout

Access Type BYTE 3 BYTE 2 BYTE 1 BYTE 0
00:02 — Indexed I/O Data MSB Data LSB Index MSB Index LSB
03- Absolute Address Byte 3 Byte 2 Byte 1 Byte 0

04 - Use GPNV 0 0 Handle MSB Handle LSB

3.2.16.3 Event Log Organization

The event log is organized as an optional (and implementation-specific) fixed-length header, followed by one or more
variable-length event records, as illustrated below1. From one implementation to the next, the format of the log header
and the size of the overall log area might change; all other fields of the event log area will be consistent across all
systems. 1

Log Header (Optional)

Type Length Year Month Day Hour Minute Second Log Variable Data

Reqd Reqd Reqd Reqd Reqd Reqd Reqd Reqd Optional

3.2.16.4 Log Record

Each log record consists of a required fixed-length leader, followed by (optional) additional data which is defined by
the event type. The fixed-length log record header is present as the first 8-bytes of each log record, regardless of
event type, and consists of:

Offset Name Format Description
00h Event Type BYTE Specifies the “Type” of event noted in an event-log entry as

defined in 3.2.16.4.1
01h Length BYTE Specifies the byte length of the event record, including the

record’s Type and Length fields. The most-significant bit of
the field specifies whether (0) or not (1) the record has been
read. The implication of the record having been read is that
the information in the log record has been processed by a
higher software layer.

02h-07h Date/Time Fields BYTE These fields contain the BCD representation of the date and
time (as read from CMOS) of the most recent occurrence of
the event. The information is present in year, month, day,
hour, minute, second order.

08h+ Log Variable Data Var This field contains the (optional) event-specific additional
status information.

DMI BIOS Specification DRAFT COPY Version 2.0

DMIBIOS2.doc 49 of 49 27 August, 1996

3.2.16.4.1 Event Log Types

Value Description
00h Reserved.
01h Single-bit ECC memory error
02h Multi-bit ECC memory error
03h Parity memory error
04h Bus time-out
05h I/O Channel Check
06h Software NMI
07h POST Memory Resize
08h POST Error
09h PCI Parity Error
0Ah PCI System Error
0Bh CPU Failure
0Ch EISA FailSafe Timer time-out
0Dh Correctable memory log disabled
0Eh Logging disabled for a specific Event Type – too many errors of the same

type received in a short amount of time.
0Fh Reserved
10h System Limit Exceeded (e.g. voltage or temperature threshold exceeded).
11h Asynchronous hardware timer expired and issued a system reset.
12h System configuration information
13h Hard-disk information
14h System reconfigured
15h Uncorrectable CPU-complex error
16h Log Area Reset/Cleared
17h System boot. If implemented, this log entry is guaranteed to be the first one

written on any system boot.
18h-7Fh Unused, available for assignment by this specification.
80h-FFh Available for system- and OEM-specific assignments.

