�

 Desktop Management

 BIOS Specification

Version 1.2

�savedate \@ "dd MMMM yyyy" * Mergeformat �23 February 1995�

05/21/1996 SL Add explanation about Slot usage in Appendix B.3.a

02/14/1997 OL Definition of bit 0, offset 4, table 7 updated.

�

This specification has been made available to the public. You are hereby granted the right to use, implement, reproduce, and distribute this specification with the foregoing rights at no charge. This specification is, and shall remain, the property Phoenix Technologies LTD ("Phoenix").

PHOENIX MAKES NO REPRESENTATION OR WARRANTY REGARDING THIS SPECIFICATION OR ANY PRODUCT OR ITEM DEVELOPED BASED ON THIS SPECIFICATION. USE OF THIS SPECIFICATION FOR ANY PURPOSE IS AT THE RISK OF THE PERSON OR ENTITY USING IT. PHOENIX DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND FREEDOM FROM INFRINGEMENT. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, PHOENIX DOES NOT MAKE ANY WARRANTY OF ANY KIND THAT ANY ITEM DEVELOPED BASED ON THIS SPECIFICATION, OR ANY PORTION OF IT, WILL NOT INFRINGE ANY COPYRIGHT, PATENT, TRADE SECRET OR OTHER INTELLECTUAL PROPERTY RIGHT OF ANY PERSON OR ENTITY IN ANY COUNTRY.

�
Table Of Contents	

�toc \o "1-3" �Overview	�gotobutton _Toc318171195 �pageref B_Toc318171195 �4��

References	�gotobutton _Toc318171196 �pageref B_Toc318171196 �4��

Enhancements to the current BIOS architecture ______	�gotobutton _Toc318171197 �pageref B_Toc318171197 �4��

Support Code Entry Points	�gotobutton _Toc318171198 �pageref B_Toc318171198 �5��

Space Requirements	�gotobutton _Toc318171199 �pageref B_Toc318171199 �5��

DMI Information	�gotobutton _Toc318171200 �pageref B_Toc318171200 �5��

Text Strings	�gotobutton _Toc318171201 �pageref B_Toc318171201 �6��

DMI Structure Model	�gotobutton _Toc318171202 �pageref B_Toc318171202 �7��

Verifying the DMI Information Structure	�gotobutton _Toc318171203 �pageref B_Toc318171203 �7��

Appendix A. DMI BIOS Sub-Structures	�gotobutton _Toc318171204 �pageref B_Toc318171204 �8��

BIOS information (Type 1)	�gotobutton _Toc318171205 �pageref B_Toc318171205 �8��

Component ID (Type 2)	�gotobutton _Toc318171206 �pageref B_Toc318171206 �8��

Processor Information (Type 3)	�gotobutton _Toc318171207 �pageref B_Toc318171207 �9��

Physical Memory Information per SIMM Socket (Type 4)	�gotobutton _Toc318171208 �pageref B_Toc318171208 �9��

Cache Information (Type 5)	�gotobutton _Toc318171209 �pageref B_Toc318171209 �9��

Port Connector Information (Type 6)	�gotobutton _Toc318171210 �pageref B_Toc318171210 �10��

System Slots (Type 7)	�gotobutton _Toc318171211 �pageref B_Toc318171211 �10��

OEM Strings (Type 8)	�gotobutton _Toc318171212 �pageref B_Toc318171212 �10��

Appendix B. Detailed Element Descriptions	�gotobutton _Toc318171213 �pageref B_Toc318171213 �11��

Appendix C. Revisions	�gotobutton _Toc318171214 �pageref B_Toc318171214 �15��

��
Overview	

Desktop Management Interface (DMI) is a new method of managing computers in an enterprise. The main component of DMI is the Management Information Format Database, or MIF. This database contains all the information about the computing system and it’s components. Using DMI, a system administrator can obtain the types, capabilities, operational status, installation date, and other information about the system components, defined in the Systems Working Group document.

The remainder of this document will discuss the PhoenixBIOS method of incorporating DMI information into the BIOS.

Note: This version, 1.2, dated �savedate \@ "d MMMM, yyyy" * Mergeformat �23 February, 1995�, supersedes all previously released versions.

References	

Desktop Management Interface Specification, Version 1.0, April 29, 1994.

DMTF PC Systems Standard MIF Definition, Version 1.0, August 1, 1994.

Enhancements to the current BIOS architecture ______

The DMI specification requires that certain information about the System Board be made available to an applications program. For systems implementing Phoenix DMI BIOS Extensions, user-defined information will be located in a series of data structures. (See Figure 1)

Vendors may decide to include all or any part of this information in their designs. System designers may add additional information into the BIOS area, like board serial number, release date or revision, and information on other system-board components. PhoenixBIOS has the support mechanism for these implementations.

Accessing DMI Information

The DMI Header is located by scanning F000:0 for the string ‘$DMI’ on a paragraph boundary.

Once the Header has been located, the DMI information can be read by using the Pointer to the structures. All Far Pointers are in Intel format (little endian), with the offset in the low word and the segment in the high word. Pointers may not be zero, if a string is to be null the pointer must point to a null value.

DMI Header Field Descriptions

Field �
Offset�
Length�
 Value�
�
Signature�
0h�
4 BYTES�
‘$DMI’ (ASCII)

byte 0 = ‘$’, hex 24

byte 1 = ‘D’, hex 44

byte 2 = ‘M’, hex 4D

byte 3 = ‘I’, hex 49�
�
Version �
4h�
BYTE�
00010010 (Ver 1.2)�
�
Length�
5h�
BYTE�
0Eh�
�
Pointer to DMI Structure�
6h�
DWORD�
Far Pointer in Intel format*�
�
Length of DMI Structures�
0Ah�
WORD�
Varies�
�
Checksum of DMI Sub-Structures�
0Ch�
BYTE�
Varies�
�
Checksum of DMI Header�
0Dh�
BYTE�
Varies�
�
*Currently the only valid pointer values are F000:xxx0 and E000:xxx0.

�
Support Code Entry Points

Certain functions may require support code. Entry Points to this code may be included as part of the structure definition. Code Entry Points are preferred over hooking system interrupts because they may be used by either Real Mode or Protected Mode operating systems.

Example: DynamicCPUInfo 	; pseudo code to get CPU speed

DynamicCPUInfo	STRUCT

	stype		byte	83h			; Indicates Structure Type

	slength		byte	8h			; Length of information in bytes

	CPU_Speed	byte ?			; Storage for CPU Speed

	RealModeSeg 	word SEG Get_CPU_Speed	; Routine to fill in CPU_Speed entry

	RealModeOff	word OFFSET Get_CPU_Speed	;

DynamicCPUInfo	ENDS

	

Get_CPU_Speed	PROC NEAR

	.					; code to get cpu speed

	.					; in to al 	

	mov	DynamicCPUInfo.CPU_Speed, al	; save it

	ret					; return to caller

Get_CPU_Speed	ENDP

Application Programs can get the address of Get_CPU_Speed from the structure and call it to update the information.

Currently there is no entry point code in the DMI core. However this provision allows OEMs to add their own code and BIOS vendors to possibly provide it in the future.

Space Requirements

Combined configuration code and data structure requirements are estimated to be 1K bytes. This is does not include any instrumentation code supported by the Entry Points.

DMI Information

The System Information is presented to an application program as a table containing a series of structures.

The first byte is the Structure Type, See Appendix A for a list of the structures. The second byte is the length of the structure in bytes, the third byte is the beginning of data for the structure. Having the size of each structure embedded in the structure allows an application program to skip over a structure of a type it does not recognize and to go to the next one.

The first structure will be located on a paragraph boundary. The last byte+1 of each structure indicates the type of the next structure or if it is 0 indicates the end of the structures.

�
Text Strings

In order to facilitate easier parsing, text strings are stored outside the structures. All strings are null terminated. This allows strings to grow or shrink without changing the location of other information. Since the strings are in the same segment near pointers are used except for the BIOS information. Far pointers are used here because most of this information already exists in current BIOSs, using a far pointer will allow the DMI information structure to exist outside the F000 memory area and still reach existing data.

Example: BIOS Info

BIOS_Info	LABEL BYTE

	db	1				; Indicates BIOS Structure Type

	db	15d				; Length of information in bytes

	dd	BIOS_Vendor			; Far Pointer to Vendor Name

	dd	BIOS_Version			; Far Pointer BIOS ver

	db	2				; Size of BIOS ROM is 128k (2 X 64k)

	dw	0xE800				; BIOS Starting Address

	dd	BIOS_Date			; Far Pointer to BIOS Build Date

	dd	BIOS_Char			; BIOS Characteristics

BIOS_Strings	LABEL BYTE				; pointers to existing BIOS_Vendor	db	‘Phoenix Technologies’,0	; existing structures

BIOS_Version	db	‘Version 4.04’,0

BIOS_Date		db	‘00/00/00’,0			; filled in at build time		

�
DMI Structure Model

�EMBED RFFlow���

Figure 1.

Verifying the DMI Information Structure

Before the DMI information is used it’s structure should be validated so the information can be relied on. First the checksums should be tested

·	Scan for $DMI in F000 memory area.

·	Get checksum of DMI header from offset 0Dh, and the length from offset 5; verify checksum.

·	Get location and length of DMI and information from offsets 10h and 14h.

·	Get checksum of DMI information from offset 16h and verify it.

Over time some of the structures may be modified, i.e. to add more entries. The new entries will always be added on to the end of the existing structure. For example the current Component ID (type 2) is currently 0Ah bytes long. If more information is added to it the length byte will be changed to reflect the new structure size but the first 0A data bytes will remain the same, thus the same parser will still work if the structures are updated.

In the case where there are multiple instances of a component (i.e. SIMM Connectors) there will be multiple copies of the substructure, one for each instance.�

�

Appendix A. DMI BIOS Sub-Structures

The information structures are defined here.

BIOS information (Type 1)

Offset�
Name�
Length�
Value�
Description�
�
0h�
Type�
 BYTE�
1 �
Indicates Basic BIOS Information�
�
1h�
Length�
 BYTE�
15h�
In bytes�
�
2h�
Vendor�
DWORD�
Varies�
Far Pointer to null terminated string containing the BIOS Vendor’s Name

�
�
6h�
BIOS Version�
DWORD�
Varies�
Far Pointer to Null terminated string containing BIOS Version �
�
Ah�
BIOS Starting Address�
WORD �
Varies�
Segment location of BIOS starting address

i.e. 0xE800

 �
�
Ch�
BIOS Release Date�
DWORD�
Varies�
Far Pointer to a null terminated string containing the BIOS release date.

 �
�
10h�
BIOS Characteristics�
DWORD�
Variable Bit Field�
Defines which functions the BIOS supports.

PCI, PCMCIA, Flash, etc. See Appendix B.

�
�
14h�
BIOS ROM Size�
BYTE�
Varies�
0 = 64k, 1 = 128k, 2=256K, 3=512K, etc.�
�

Component ID (Type 2)

Offset�
Name�
Length�
Value�
Description�
�
0h�
Type �
BYTE�
2�
Component ID�
�
1h�
Length�
BYTE�
0Ah�
�
�
2h�
Manufacturer�
WORD�
Varies�
Near Pointer to Null terminated string�
�
4h�
Product�
WORD�
Varies�
Near Pointer to Null terminated string�
�
6h�
Version�
WORD�
Varies�
Near Pointer to Null terminated string�
�
8h�
Serial Number�
WORD�
Varies�
Near Pointer to Null terminated string�
�

Processor Information (Type 3)

Offset�
Name�
Length�
Value�
Description�
�
0h�
Type�
BYTE�
3�
Processor Information�
�
1h�
Length�
BYTE�
0Bh�
�
�
2h�
Processsor Type�
BYTE�
ENUM�
See Appendix B.2.a�
�
3h�
Processor Family�
BYTE�
ENUM�
See Appendix B.2.b�
�
4h�
Processor

Manufacturer�
WORD�
Varies�
Near Pointer to a string, Processor Mfgr�
�
6h�
Processor Version�
WORD�
Varies�
Near Pointer to a String describing the Processor�
�
8h�
Max Speed�
WORD�
Varies�
 i.e. 99d for a 99Mhz processor�
�
Ah�
Processor Upgrade�
BYTE�
ENUM�
See Appendix B.2.c�
�

Physical Memory Information per SIMM Socket (Type 4)

Offset�
Name�
Length�
Value�
Description�
�
0h�
Type�
BYTE�
4�
Memory Structure�
�
1h�
Length�
BYTE�
08h�
 �
�
2h�
Socket Designation�
WORD�
Varies�
Near Pointer to a string. Example ‘J202’,0�
�
4h�
Bank Connections�
BYTE�
Varies�
Each nibble indicates a bank connection, 0xF means no connection. Example: If banks 1 & 3 were connected to a SIMM socket the byte for that socket would be 13h. If only bank 2 were connected the byte for that socket would be 2Fh.�
�
5h�
Size�
BYTE�
Varies�
0 = 1MB, 1=2MB, 2=4MB, 3=8MB, etc.

Bit 7 = 1 indicates a double bank socket�
�
6h�
Max Size�
BYTE�
Varies�
 Same as Size field�
�
7h�
Speed�
BYTE�
Varies�
i.e. 60d for a 60ns SIMM�
�

Cache Information (Type 5)

Offset�
Name�
Length�
Value�
Description�
�
0h�
Type�
BYTE�
5�
Cache Structure�
�
1h�
Length�
BYTE�
05�
�
�
2h�
Cache Level�
BYTE�
Varies�
1 = L1, 2 = L2�
�
3h�
Max Cache Size�
BYTE�
Varies�
Max size that may be installed

bit 7:	0 - 1K granularity

	1 - 64K granularity

bits 6:0:	max size in given granularity�
�
4h�
Installed Size�
BYTE�
Varies�
Same as Max Cache Size field�
�

Port Connector Information (Type 6)

Offset�
Name�
Length�
Value�
Description�
�
0h�
Type�
BYTE�
6�
Connector Structure�
�
1h�
Length�
BYTE�
06h�
�
�
2h�
Connector Type�
BYTE�
ENUM�
Connector type. See Appendix B.4.a�
�
3h�
Port Type�
BYTE�
ENUM�
Describes the function of the connector. See Appendix B.4.b�
�
4h�
Ref Desig�
WORD�
Varies�
Near Pointer to a null terminated string containing the Reference Designation, i.e. ‘J202’, 0�
�

System Slots (Type 7)

Offset�
Name�
Length�
Value�
Description�
�
0h�
Type�
 BYTE�
7�
System Slot Structure �
�
1h�
Length�
BYTE�
07h�
�
�
2h�
Slot Designation�
WORD�
Varies�
Near Pointer to a null terminated text string of the slot’s reference designation i.e. ‘J202’,0�
�
4h�
Slot Type�
BYTE�
ENUM�
 See Appendix B.3.a�
�
5h�
Slot Width�
BYTE�
ENUM�
 See Appendix B.3.b�
�
6h�
Current Usage�
BYTE�
BYTE�
See Appendix B.3.c

�
�

 OEM Strings (Type 8)

Offset�
Name�
Length�
Value�
Description�
�
0h�
Type �
BYTE�
8�
Component ID�
�
1h�
Length�
BYTE�
05h�
�
�
2h�
Count�
BYTE�
Varies�
Number of strings�
�
3h�
String Table Pointer�
WORD�
Varies�
Near pointer to table of near pointers to null terminated strings�
�
�

Appendix B. Detailed Element Descriptions

1. BIOS Information

BIOS Characteristics - This 32bit bit field defines the functionality of the BIOS

Bit 0 - Reserved

Bit 1 - Other

Bit 2 - Unknown

Bit 3 - Unsupported

Bit 4 - Set if ISA is supported

Bit 5 - Set if MCA is supported

Bit 6 - Set if EISA is supported

Bit 7 - Set if PCI is supported

Bit 8 - Set if PCMCIA is supported

Bit 9 - Set if Plug and Play is supported

Bit 10 - Set if APM is supported

Bit 11 - Set if BIOS is Upgradeable (Flash)

Bit 12 - Set if BIOS shadowing is allowed

Bit 13 - Set if VL-VESA is supported

Bit 14 - Set if ESCD support is available

Bit 15 - Set if Boot from CD is supported

Bits 16-23 Reserved for OEM

Bits 24-32 Reserved for BIOS Vendor

2. CPU Information

a. Processor Information - Processor Type

	1	Other

	2 	Unknown

	3	Central Processor

	4	Math Processor

	5	DSP Processor

	6	Video Processor

b. Processor Information - Processor Family

	1	Other

	2	Unknown

	3 	8086

	4	80286

	5	80386

	6	80486

	7 	8087

	8 	80287

	9	80387

	A	80487

	B	Pentium Family

	0x20	Power PC Family

�
c. Processor Information - Processor Upgrade

	1	Other

	2	Unknown

	3	Daughter Board

	4	ZIF Socket

	5	Replaceable Piggy Back

	6	None	

3. SlotSystem Slots

a. System Slots - Slot Type

~~SL note for HP slot usage explanation

	1	ISA 		0000 0010 ==> bit 1=1 ==> ISA

	2	EISA		0000 0100 ==> bit 2=1 ==> EISA

	3	MCA		0000 1000 ==> bit 3=1 ==> MCA

	4	PCI		0001 0000 ==> bit 4=1 ==> PCI

	5	VL	

	6	PCMCIA

	If it is a COMBO (ISA/PCI), bios will report 12h (0001 0010), which means PCI/ISA

	for this slot.

	Phoenix was used to consider that the slot type has to be used in byte, whereas HP has always

	used it as a bit definition. Thus, when you use a Phoenix tool to see the DMI structure for slot

	usage, for 12h it will report Unknown because this case has not been considered.

	If for a slot, it reports 02h, for Phoenix it will be an EISA slot, whereas for HP, it will be an ISA

	slot...Wonderful, isn’t it ??!!!!!

	~~OL Bit 0 definition

	0 : The slot doesn’t support FULL LENGTH cards

	1 : The slot supports FULL LENGTH cards

	For instance, it’s not so rare that the ISA slot closest to the board cannot support FULL LENGTH

	ISA card (due to the SIMMS). It will therefore gets the value of 02h, although an other ISA slot

	above it will get the value of 03h.

b. System Slots - Slot Width

	1	Other

	2	Unknown

	3	8 bit

	4	16 bit

	5	32 bit

	6	64 bit

	7	128 bit

c. Current Usage

	1 	Other

	2	Unknown

	3 	Available

	4	In use

4. Port Information

a. Connector Types

	1	Centronics

	2 	Mini Centronics

	3	Proprietary

	4	DB-925 pin male

	5	DB-925 pin female	

	6	DB-259 pin male

	7	DB-259 pin female

	8 	DB-215 pin male

	9 	DB-215 pin female

	8	RJ-11

	9	RJ-45

	A	50 Pin MiniSCSI

	B	Mini-DIN

	C	Micro-DIN

	D	PS/2

	E	Infrared

	F	HP-HIL

	10	Access Bus

�
b. Port TypesTypes

	

	0	 None

	1	 Parallel Port XT/AT Compatible

	2	 Parallel Port PS/2

	3	 Parallel Port ECP

	4	 Parallel Port EPP

	5	 Serial Port XT/AT Compatible

	6	Serial Port 16450 Compatible

	7	Serial Port 16550 Compatible

	8	Serial Port 16550A Compatible

	9	 SCSI Port

	A	 MIDI Port

	B	 Joy Stick Port

	C	 Access Bus Port

	D	 Keyboard Port

	E	 Mouse Port

�
 Structure Types

The Structure Type allows system designers to string together various additional information structures.

Type = 0 - No further structures

Type = 1 - BIOS information

Type = 2 - Component ID

Type = 3 - Processor Information

Type = 4 - Memory Information

Type = 5 - Cache Information

Type = 6 - Port Connector Information

Type = 7 - System Slot Information

Type = 8 - OEM Strings

Note: Structure Types 0 through 127 (7F h) are reserved for BIOS vendors and will be defined by this specification. Structures 128 through 256 (80h to FFh) are reserved for System Designers and OEMs for proprietary information. All structures must contain type and size for the first two bytes so that no custom structure can invalidate the integrity of the structure table.

 Appendix C. Revisions

1.0	Initial Release

1.1	Removed Entry Points from DMI header into the structures that use the code

	Added ‘Cache Level’ Byte to Cache Structure

	Rearranged some structures so that WORD entries fall on word boundaries

1.1a	Clarified pointer information and signature info.

	Change ‘Max Cache Size’ and ‘Installed Size’ fields

	Changed ‘Current Usage’ field

	Corrected ‘Connector Type’ enumeration

	Deleted Processor Family description string.

	Overall clarifications

	 Added OEM Strings (type 8) sub-structure

1.2	Changed DMI Header Version to 1.2

	Added the requirement that the Pointer to DMI Structures must be F000:xxx0 or E000:xxx0

	Added the requirement that pointers may noe be zero

	Corrections to structure offsets.

	Revised estimated size to 1KB

DMI BIOS Specification					 			Version 1.2

�filename * Mergeformat �Dmib12.doc� 	�page * Mergeformat �4� of �numpages * Mergeformat �15�	�savedate \@ "dd MMMM yyyy" * Mergeformat �10 September 1997�

